

Topic:

Assessing Training and Developmental strategies for Junior golfers

Guaranteed Grades - Projectsdeal.co.uk

Introduction

In examining the developmental trajectory of young athletes, particularly in sports like golf, it is critical to consider the intricate interplay of growth, maturation, and physical capabilities (Aarresola, Itkonen & Laine, 2017). This essay will analyse these factors through the lens of Sarah, a 13-year-old female golfer confronting challenges in aligning her performance with that of her peers on the golf course. By assessing her growth curve, physical proficiencies and maturation process, this essay will aim to gain insights into her developmental phase and discuss strategic interventions her coach and parents can adopt to bolster her performance and enjoyment of the sport.

Task 1:

Guaranteed Grades - Projectsdeal.co.uk

Understanding Sarah's Development

Peak Height Velocity (PHV) is as a pivotal marker in understanding an athlete's maturation timeline. Typically, girls reach their PHV approximately at 11.5 to 12 years, although there are individual variances are common. Sarah's data indicate that her predicted age of peak height velocity (APHV) is 13.5 years, with the current measurement placing her 0.5 years away from reaching this pivotal growth milestone. PHV indicates the period during which adolescents experience their fastest upward growth in stature. This is a critical maturation indicator, illustrating that she is at the peak of experiencing, her PHV (Monasterio et al., 2023). Given her age and the predicted years from APHV, Sarah is in the peri-peak height velocity phase, where significant growth spurts are expected imminently.

Understanding Sarah's proximity to PHV allows for a greater appreciation of her current capabilities and potential growth trajectory. It is conceivable that her current performance plateau may be partially attributed to the physiological and biomechanical adjustments inherent to this phase. Consequently, a tailored approach that considers these developmental aspects can be invaluable (Boeyer et al., 2020). For her coach and parents, this aspect incorporates developing a training regimen that not only addresses the technical aspects of golf but also accommodates her ongoing physical development. Emphasizing skill development, flexibility and strength training pertinent to her growth stage could prove crucial. Moreover, fostering a supportive environment that prioritises her well-being and enjoyment of the sport is paramount.

Estimating Sarah's Peak Height Velocity

In the analysis of Sarah's developmental phase, with a height of 145cm, a sitting height of 62 cm, and a weight of 42 kg, her calculated APH is 13.5 and her predicted years from APHV is -0.5. It is evident that she is likely navigating through her pubertal growth spurt or has recently surpassed her peak height velocity (PHV). Traditionally, females attain PHV between the ages of 11 and 12, although with individual variances (Malina et al., 2021). When calculating her current maturation status, the data that Sarah is slightly post-PHV suggests she is in a critical period of rapid growth in stature (Hobold et al., 2017). This period is pivotal for understanding the intersection of growth, maturation, and physical development and its implications on athletic performance, especially in precision sports such as golf. This insight not only indicates Sarah's current developmental stage but also underpins the importance of tailored training and support strategies that align with her unique physiological changes (Cole, 2020). Such an approach can enhance her sporting experience, promoting both performance enhancement and enjoyment of the game.

Discussing Development with Sarah's Parents

This information would be vital for Sarah's parents to determine her journey in golf (Toms, 2017). For instance, it is imperative to discuss how growth and maturation vary from one individual to another. Her current performance and physical stats must be evaluated through the lens of her ongoing development. It's also vital to point out that she might be at a slight temporary disadvantage compared to peers who are slightly ahead in their physical growth. Engaging with her parents would also be a good chance to inform her parents about the importance of long-term skill enhancement, honing in on technique. Besides, this approach would also be vital to inform them of the mental aspect of the game and build resilience elements that are just as vital for success in golf as physical prowess (Wells & Langdown, 2020).

Utilizing Growth and Maturation Information

Focusing on Sarah's growth and her path in golf transcends merely addressing immediate concerns about her game. It's essentially about evaluating her trajectory in the sport. By understanding her growth and maturation phase, it is possible to tailor training programs that do not respect her current physical condition and also strategically foster areas ripe for development (Bourgain et al., 2022). This process averts the mere overemphasis on sheer physical strength or rapid maturation. However, engaging Sarah and her peers in a conversation about athlete development in its totality can be critical. For instance, it is critical to emphasise the need for better nutrition to improve her physical strength and avoid burnout (Langdown et al., 2019). Emphasizing these areas highlights a comprehensive approach to her development as a budding athlete, ensuring that every base is covered as she strides forward in her golfing journey.

Task 2: Explain how her height and mass would relate to her clubhead speed

Closely examining Sarah's journey in golf sheds light on the complex interplay between an athlete's physical attributes and their performance, especially when it comes to the pivotal metric of clubhead speed (Bliss, 2022). This aspect, firmly rooted in the belief that young athletes are distinct from adults in their developmental needs, highlights the crucial role of understanding growth, maturation, and physical abilities in coaching.

Height and mass significantly influence a golfer's ability to achieve high clubhead speeds (Langdown et al., 2019). This directly correlates with how far the ball can be driven. With Sarah's height at 145 cm and her weight at 42 kg, these metrics provide a lens through which to view her physical development in comparison to her peers (Toms, 2017). Clubhead speed, derived from the golfer's capacity to swing rapidly, hinges on the ability to generate power. This power is affected by the athlete's physical stature such as height and mass, technical prowess and the choice of equipment (Lima et al., 2023). Height is particularly important because it determines the length of the lever arms that swing the club (Bourgain et al., 2022). A taller golfer, benefiting from longer arms, can create a wider swing arc. This leads to greater acceleration of the clubhead at the point of impact (Bliss, 2022). This mechanic suggests that height directly influences the potential for speed generation and, consequently, the distance the ball travels. However, considering Sarah might not yet have reached her peak height velocity, her shorter stature could limit her swing arc's extent, potentially capping her clubhead speed.

Moreover, the distribution and utilization of muscle mass plays a critical role in force generation. This is a key component of power and, by extension, clubhead speed. A golfer with robust musculature can exert more force on the club during a swing, thus increasing speed. For Sarah, her current weight offers a basic view of her physical development.

Further insight into the physical assessments of Sarah gives an interesting picture of the relationships between athletic ability to golf performance, with great interest in clubhead speed. Lower and upper body athlete strength is the key aspect that collaborates with the athlete's explosive power in helping to determine the ball's flight distance (Stevenson, Allison & Hayes, 2009). Standing a broad jump is a critical aspect that relates to power, especially where a game such as golf requires the legs to be utilised. In golf, that would imply the swing. Sarah's jump of 123 cm puts her in the lower-middle percentile among others in her age group (Lloyd & Oliver, 2012). This indicates that she has a little to go in raising some areas of her body for more power in her golf swing. On the other side, the push-up test will highlight Sarah's ability in the upper part of her body to control the acceleration of the golf club while swinging.

Task 3 Guaranteed Grades - Projectsdeal.co.uk

Comparison to Juniors of the Same Age and Gender

When comparing Sarah's physical metrics against those of her peers, several considerations are vital, such as average height, mass, and timing of PHV for female juniors of her age. Generally, the average height for 13-year-old girls ranges from 150 to 160 cm, with a weight spectrum of approximately 40 to 60 kg. However, this depends on the stage of pubertal development and individual growth patterns. Sarah's height (145 cm) and weight (42 kg) position her slightly below the median for her age group, suggesting a normal variance in growth patterns.

In addition to stature, Sarah's clubhead speed, a direct measure of physical power in golf, is observed to be lower than that of her peers. This disparity could be attributed to her current stage of physical development, which is presumably in a critical phase following the PHV (Lima et al.,

2023). Considering that Sarah is just beyond this rapid growth phase, her muscular strength, endurance and coordination could still be developing. This directly impacts her ability to generate the same level of clubhead speed as her peers.

Understanding these physical benchmarks in relation to Sarah's development provides valuable insights into the potential areas of focus for enhancing her athletic performance. It underscores the necessity of adopting a nuanced approach to her training, one that accounts for her unique developmental timeline (Hernández Camacho et al., 2018). This approach not only aids in optimising her physical capabilities but also ensures a positive and enjoyable engagement with the sport. Hence, strategic patience and individualized training regimens could play a pivotal role in bridging the performance gap observed between Sarah and her peers. This process will facilitate a holistic development of her athletic potential in golf.

Guaranteed Grades Projectsdeal.co.uk
Her result identifies a particular area to develop in the enhancement of club head speed. This includes the ability to enhance the strength and endurance of the upper part of her body (Mirwald et al., 2002). In the case of Sarah, her explosive strength and the upper part of her body remain a focus for the development program. This might include plyometrics for leg power and resistance training that respects her current developmental stage (Wells & Langdown, 2020). From a practical perspective, this approach as cited by Lloyd et al. (2015) allows for a new and profound appreciation for the fact that junior athletes have special needs, and training regimes should be envisioned in light of special trajectories in growth, maturation, and physical capabilities. Therefore, Sarah's coach must adopt a clear trajectory to develop not only her club head speed but also her holistic aspects as a young golfer.

Encouraging patience and fostering a supportive atmosphere is critical. Sarah's golfing progress should focus on her personal growth and enjoyment of the sport, not only on competition.

Her present phase of growth and development presents a prime time for refining skills that, once her physical development catches up, could significantly elevate her game. Discussions around nutrition, overall physical preparedness, and possibly getting insights from a sports science team can offer additional layers of support for Sarah's growth, both on and off the course (Lloyd & Oliver, 2012; Stevenson, Allison & Hayes, 2009).

Conclusion

In sporting science, the imperative of physical exercise and body structure cannot be underestimated in enhancing an athlete's potential for excellence. This case study on Sarah's performance on different specialized strength assessment tasks for both upper and lower body parts has indicated a direct relation between specialised strengths and remarkable progress in club head speed, an important parameter for the success of golfing. This assessment has outlined some growth areas for Sarah, while also underpinning the need for a more holistic, individualized training system as part of athlete development.

Considering these perspectives, this study recommends that a coach specialise in the development of explosive power and endurance in an athlete. This approach would make an athlete such as Sarah progress in golf but also contribute to wider considerations related to fine-tuning athletic training methodologies. The process of becoming an outstanding golfer essentially calls for a smooth combination of physical training and sports-specific skills while emphasising the inseparable aspect of physical training from technical competence to becoming champions.

References

Aarresola, O., Itkonen, H., & Laine, K. (2017). Young athletes' significant experiences in sport: critical sociological reflections on athlete development. *European Journal for Sport and Society*, 14(3), 265-285.

Bliss, A. (Ed.). (2022). *Strength and conditioning for golf: a guide for coaches and players*. Taylor & Francis.

Boeyer, M. E., Middleton, K. M., Duren, D. L., & Leary, E. V. (2020). Estimating peak height velocity in individuals: a comparison of statistical methods. *Annals of human biology*, 47(5), 434-445.

Bourgain, M., Rouch, P., Rouillon, O., Thoreux, P., & Sauret, C. (2022). Golf swing biomechanics: A systematic review and methodological recommendations for kinematics. *Sports*, 10(6), 91.

Cole, T. J. (2020). Estimating peak height velocity in individuals. *Annals of Human Biology*, 47(6), 584-584.

Hernández Camacho, J. D., Huelva Leal, A. B., Martínez Sanz, J. M., Lahoz Ruano, M. D., & Vázquez Carrión, J. (2018). Peak height velocity and muscle mass in young soccer players.

Hobold, E., Flores, L. J. F., Brandt, R., Mazzardo, O., & Arruda, M. D. (2017). Peak height velocity in anthropometry and body composition of students. *Revista Brasileira de Cineantropometria & Desempenho Humano*, 19, 309-315.

Langdown, B. L., Wells, J. E., Graham, S., & Bridge, M. W. (2019). Acute effects of different warm-up protocols on highly skilled golfers' drive performance. *Journal of sports sciences*, 37(6), 656-664.

Lima, A. B., Quinaud, R. T., Gonçalves, C. E., & Carvalho, H. M. (2023). Peak height velocity in young athletes: A longitudinal meta-analysis. *Journal of Sports Sciences*, 41(2), 151-163.

Lloyd, R. S., & Oliver, J. L. (2012). The youth physical development model: A new approach to long-term athletic development. *Strength & Conditioning Journal*, 34(3), 61-72.

Lloyd, R. S., Oliver, J. L., Faigenbaum, A. D., Howard, R., Croix, M. B. D. S., Williams, C. A., ... & Myer, G. D. (2015). Long-term athletic development-part 1: a pathway for all youth. *The Journal of Strength & Conditioning Research*, 29(5), 1439-1450.

Malina, R. M., Coelho-e-Silva, M. J., Martinho, D. V., Sousa-e-Siva, P., Figueiredo, A. J., Cumming, S. P., ... & Koziel, S. M. (2021). Observed and predicted ages at peak height velocity in soccer players. *Plos one*, 16(7), e0254659.

Mirwald, R. L., Baxter-Jones, A. D., Bailey, D. A., & Beunen, G. P. (2002). An assessment of maturity from anthropometric measurements. *Medicine & science in sports & exercise*, 34(4), 689-694.

Monasterio, X., Gil, S., Bidaurrezaga-Letona, I., Lekue, J. A., Diaz-Beitia, G., Santisteban, J. M., ... & Larruskain, J. (2023). Peak height velocity affects injury burden in circa-PHV soccer players. *International Journal of Sports Medicine*, 44(04), 292-297.

Stevenson, E. J., Allison, S. J., & Hayes, P. R. (2009). Effect of a Carbohydrate-Caffeine Sports Drink on Performance During a Laboratory-based Simulated Golf Round: 881: May 29 9: 30 AM-9: 45 AM. *Medicine & Science in Sports & Exercise*, 41(5), 108-109.

Toms, M. (Ed.). (2017). *Routledge international handbook of golf science*. Routledge.

Wells, J. E., & Langdown, B. L. (2020). Sports science for golf: A survey of high-skilled golfers' "perceptions" and "practices". *Journal of Sports Sciences*, 38(8), 918-927.

Guaranteed Grades - [Projectsdeal.co.uk](https://www.projectsdeal.co.uk)