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Chapter 1: Introduction

Background analysis
Cardiovascular disease (CVD) is a condition impacting the cardiovascular system, which

includes the heart and blood vessels. According to the World Health Organization (WHO), CVD
is the leading risk factor amounting to about 17.9 million deaths every year around the world
(Sahin and Ilgiin, 2020). Around 32% of deaths are caused by CVDs and according to the centre
for diseases control and prevention (CDC), heart diseases cause one death every 36 seconds in
the United States of America (Ishaq et al., 2021). WHO further states that CVD causes 38% of

the premature deaths caused by noncommunicable diseases in people under age 70.

With CVD claiming 659,000 lives in the United States alone, several researchers intend to
provide solutions to prevent deaths due to CVDs. To understand the causes of death it is
important to know the most common cardiovascular diseases. The heart and blood disorders
under CVD comprise numerous disorders associated with obstruction of blood flow through

blood vessels supplying the heart, brain and other parts of the body.

Cardiovascular | Causes Incidents and deaths

disease

Coronary heart | Caused by obstruction of blood vessels | 126 million patients and 9

diseases flowing to the heart. million deaths in 2017 (Khan
et al., 2020)

Cerebrovascular | Disease in the blood vessels carrying blood to | 12.2 million incidents and

disease the brain. It causes Stroke. 6.55 million deaths in 2019
(Khan et al., 2020)

Peripheral Obstructions in the blood vessels carrying | 113,443,017 incidents and

arterial disease | blood to arms and legs. 74,063 deaths in 2019 (Lin et
al., 2022)

Rheumatic A condition caused by rheumatic fever | 33,194,900 cases and 319,400

heart disease (Streptococci bacterial infection) that affects | deaths in 2015 (Manpreet and

the heart muscles and valves. Kalia, 2020)




Congenital A Dbirth defect resulting in abnormal | 13.3 million patients and 985,

heart disease development of the heart. 000 deaths in 2019 (Manpreet
and Kalia, 2020)

Deep vein | Blood clots in the leg veins can slowly move | 900,000 incidents and

thrombosis to the heart ad cause blockage. 100,000 deaths in 2022

(Wang et al., 2022)

Table 1: CVD disease causes and impact worldwide

The primary causes of CVD mortality are sudden, premature heart attacks and strokes. Premature
heart attacks come with slight variations in the functioning of the heart that accentuates over
time. Intricate, early prediction of abnormalities in medical tests could help avert untimely
deaths. Electrocardiogram (ECG) is a generic electronic device employed to analyze overall
heart health. For decades ECG remains the main source of accessing and analyzing coronary
health. Due to its simplicity, ease of use, cost-effectiveness and noninvasiveness, ECG is largely

preferred to do basic or initial heart health monitoring.

ECG measures the rhythmic activity of the heart over a particular duration. To perform an ECG,
12 sensors are connected to the chest and limbs to measure the electrical signals. These signals
coordinate with proper blood flow throughout the body. Thus, ECG is a straightforward way to
measure abnormality in heartbeats. An ECG can detect heart problems, enlarged heart chambers
and abnormal heart rhythm. This study focuses on an abnormal heartbeat problem medically
called arrhythmia. An arrhythmia occurs when the electrical signals are asynchronous to the
heartbeat signifying that the heartbeat is to slow or too fast. Arrhythmia remains as one of the
primary signs of heart ailments. Not all arrythmias are fatal but when undetected they may lead
to sudden heart failure and subsequent deaths. Usually, the illness progresses over time and
causes sudden cardiac arrests (De Chazal, O’Dwyer, & Reilly, 2004)(Alonso-Atienza, Morgado,
Fernandez-Martinez, Garcia-Alberola, & Rojo-Alvarez, 2014). According to (Srinivasan &
Schilling, 2018), of the 17 million deaths caused by heart ailments, sudden cardiac arrests (SDC)
aaccountto 25%. With ECG being the direct way to predict real time heart function variations,

several researches have been conducted over the years to exploit pattern identification.




Establishing a real time pattern identification will predict even the smallest variations in the ECG

over time, thus helping avert SDCs.

Research Gap
Over the past decade, novel algorithms have been performed over the ECG data to predict the

variations in heart functions. Previous researches have undertaken learning algorithms like
decision trees, k nearest neighbor (Castillo, Melin, Ramirez, & Soria, 2012)(Saini, Singh, &
Khosla, 2013), support vector machines (Raj, Ray, & Shankar, 2016) (Ye, Kumar, & Coimbra,
2016), neural networks (Dokur & Olmez, 2001) (Martis, Acharya, & Min, 2013) (Inan,
Giovangrandi, & Kovacs, 2006) and deep learning models. Several research have also researched
upon ECG signal acquisition and processing using signal processing techniques like, time
domain analysis (Zhang, Dong, Luo, Choi, & Wu, 2014)(Huang, Liu, Zhu, Wang, & Hu, 2014),
filter banks, frequency domain analysis (Zidelmal, Amirou, Ould-Abdeslam, & Merckle,
2013)(Garcia, Moreira, Menotti, & Luz, 2017)(Qurraie & Afkhami, 2017) and wavelet
transformation (Ye, Kumar, & Coimbra, 2012) (Ye, Kumar, & Coimbra, 2016) (Elhaj, Salim,
Harris, Swee, & Ahmed, 2016)(Mar, Zaunseder, Martinez, Llamedo, & Poll, 2011) to detect
arrhythmia.

Need for the research

Previous research has classified irregularity of the heartbeats automatically (Arvanaghi,
Danishvar and Danishvar, 2022). However, the learning ability of the automated classifier was
not optimized and the database used was imprecise. Manipulating the real-world scenario is
imperative to get accurate predictions. Similarly, Al-Turjman, Nawaz and Ulusar (2020) discuss
the analysis of the data outputs of medical instruments, however, measurements can be imprecise
and time-consuming. Using support vector machines (SVM) as discussed by (Martinez-Alanis et
al., 2020) requires inputting an optimal set of RR intervals and wavelets. Shi et al. (2019) discuss
a hierarchical classification scheme that implements Extreme Gradient boosting (XGboost)
classifier to classify a single heartbeat. Despite the speed and accuracy provided by XGboost in
supervised learning environments, it affects the impact balance. In addition, class sensitivity was
not obtained in the outputs discussed. More heartbeat data should be inputted in the subject-
oriented analysis. The clustering algorithm discussed by Yang and Wei (2020) additionally

inputs morphological errors to lessen interpretation dissimilarities, however, there were real-time



data constraints. The analysis of various research suggests that there is no existing algorithm that

provides better detection rates for various arrhythmia stages.

The outcomes of the research intended to achieve accurate classification of the heartbeat could
be applied to monitor the health scenario of patients with ease. With the augmenting risk of
cardiovascular illness and the corresponding deaths, early interpretation of abnormalities proves
the best way forward in diagnosing illness. Providing a learning algorithm that could extract the
ECG data and accurately predict abnormalities will pave way for early therapies that could save

lives. In addition, the time spend on diagnosing the problem will be reduced.

Research Aim
The project aims to construct an effective heartbeat classification method to accurately classify

heartbeats based on echo state networks a part of reservoir computing.

Research Objective
1. The primary objective is to classify the heart rate based on the QRS complex. The

research process intended is as follows.

2. To preprocess the ECG to get the baselines signal to ensure accurate classification.

3. To segment the ECG signal and extract the temporal and wave features associated with
the QRS complex.

4. Classify the extracted features using the reservoir computing-based echo state network, a
part of the recurrent neural network.

5. Obtain high accuracy with enhanced features to solve ventricular classification problems.

Research Questions
The research will follow quantitative analysis trying to solve the following questions.

1. How important is the research on ventricular heart rate classification in heart failure
identification?

2. What are the different algorithms that have rendered acceptable results on ECG
classification?

3. What are the disadvantages identified in the algorithms employed in previous research?

4. How does echo state network classification improve the accuracy of ventricular heart rate

classification?



Research Method
The research will follow a quantitative analysis to develop a classification scheme to retrieve,

enhance and analyze ECG data to detect ventricular heart rate variabilities. Classification is the
primary way to optimize the detection of arrhythmia. The objective of the project is to develop
an effective classification method using the echo state network part of the reservoir computing

framework.

The methodology adopted to pursue the research include four steps: Preprocessing the ECG
signal, heartbeat segmentation, extracting features and classification. Variegated ECG signals are
the input that will be preprocessed to extract the signal from noise. The baseline will be removed
in the signal preprocessing to move into the segmentation phase. Signal preprocessing is
necessary to remove the unwanted sections of the input signal to ensure relevance and accuracy
during feature extraction and classification. In the segmentation phase, the heartbeat will be
segmented based on the QRS complex, the deflections noted apparently in an ECG. The QRS
complex represents ventricular depolarization, which represents the conduction of electrical
impulses into the ventricles. The segmented output will be subjected to feature extraction where
the ECG wave features will be extracted. The temporal features like the pre-RR intervals, local
average RR interval, post-RR interval and global average RR interval will be included in feature
extraction. The wave features that will be included are the PP interval, RR interval, PR interval,
R interval and QT interval. RR intervals depict the ability of the heart to adapt to environmental
changes, where the heart rate can be represented through RR intervals in a millisecond.
Precisely, heart rate variability measures the time intervals between two heartbeats that are
measured as RR intervals in milliseconds. The temporal and wave features will then be
processed through classification, which will be performed through an echo state network.
Reservoir computing-based echo state network is a part of a recurrent neural network. The
importance of recurrent neural networks is that the machine learning system created will
remember the input enabling it to predict accurate results on sequential data. RNN can remember
inputs over time, making it reliable while working with long-time series data. With the Echo
state network, it is easier to work with large non-linear data like the ECG which varies

extensively with time.



Chapter 2: Literature Review

Introduction
Arrhythmia, a class of cardiovascular disease requires timely treatment. Arrhythmia constrains

the blood flow to the heart and other parts of the body causing irreversible damage. In most
cases, arrhythmia gradually affects the functioning of the heart, which when undetected could
lead to sudden deaths (D’Errico et al., 2020). ECG is employed largely to determine the state of
the heart and to routinely review the condition. Classification of heartbeat determines the
irregularity of the heartbeat with time. The rhythm variations in arrhythmia could be too fast or
too slow. Based on the classification of heartbeat, arrhythmia can be of two types: non-life
threatening and life-threatening arrhythmia. The non-life-threatening arrhythmia leads to general
heart function weakness which can be treated with therapy. Life-threatening arrhythmia causes
tachycardia and ventricular fibrillation triggering untimely cardiac arrests. Bio-signals
monitoring using ECG is quite challenging because of its non-stationary and nonlinear
properties. Thus, various pattern recognition algorithms have been mapped with ECG analysis to
effectively classify and detect abnormalities. The various kinds of literature classifying
heartbeats vary in the following aspects: feature analysis, use of classifiers and evaluation
techniques undertaken. The different features identified from the literature analysis include
Higher order statistical features (Khoshnevis and Sankar, 2020), wavelet transformation (Tian et
al., 2023), independent component analysis (Pion-Tonachini, Kreutz-Delgado and Makeig, 2019),
Hermit coefficients (Brieva, Ponce and Moya-Albor, 2020) and morphological features. The
classifiers identified from previous research include support vector machines (Martinez-Alanis et
al., 2020), self-organizing maps (Nilashi et al., 2020), artificial neural networks (ANN) (Pandey
and Janghel, 2018), linear discrimination analysis (LDA) (Liu et al., 2019), conditional random
field (CRF) (Fang and Huang, 2021) and ensemble analysis. The evaluation schemes used are of
two types class-oriented and subject-oriented evaluations. Class-oriented evaluation works on the
generation of training and testing samples. Extensive ECG signal heartbeat segmentation results
in more than a thousand individual records. When selecting random records for supervised
classification there is a higher probability that the training and the testing samples belong to the
same person (Cao et al., 2020). Class-oriented methods thus provide lower-quality

generalization. On the contrary, subject-oriented methods as discussed in the paper by Bognar



and Fridle (2020) segment the data sets as training and testing sets before the segmentation of
heartbeats. With feature classification and evaluation, it is possible to completely automate the

process of heartbeat classification using advanced statistical approaches.

Clinical Application of ECG
Clinical applications of patient-specific electrocardiogram (ECG) analyses are growing in

prominence. Newer generation event and Holter monitor systems, texture electrocardiogram
recorders, and wearable devices with ECG sensors record and monitor real-time cardiac data
across periods of days or weeks (i.e., beyond the typical 48 hours), enabling thorough statistical
analysis and a more nuanced picture of a patient's cardiovascular health. If an appropriate model
is used to assess patient-specific diseases, real-time, individualised monitoring can also enable
quick action or patient recalls. However, sophisticated automated algorithms compatible with
developing hardware technology are required to manage this massive data and extract the

important information for carrying out additional statistical analysis (Acharya et al. 2018).

Arrhythmia detection and heartbeat categorization have been studied for decades, and many
signal processing methods including frequency analysis, template-matching, discrete wavelet,
filter banks, and hidden Markov models as well as variants of neural networks have all been
used. However, more improvements are required in the field of autonomous portable ECG
interpretation because of the lack of a full set of algorithms compatible with new micro-device
technologies, which has limited the actual exploitation of automated ECG diagnostic devices
thus far (Afkhami et al. 2016).

When it comes to automated ECG monitoring activities like beat categorization, the substantial
individual and group differences in the temporal course and morphology of ECG waveforms
pose a significant challenge. One simple, but computationally costly, option is to use training
data obtained from many people with a variety of healthy or pathological heart diseases to create
a general classifier (Cuomo et al. 2016). If the data volume and complexity of the job are
excessive, deep-learning-inspired algorithms will often adopt this approach to provide predictive
analytic solutions. However, such a method confronts several obstacles when used for ECG
diagnosis, including data collecting, beat annotation, and technological obstacles related to

hardware implementations. A patient-specific classifier, in contrast to a generic model, allows
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the classification algorithm to be tailored to the specific characteristics of each patient's ECG

records by eliminating the need to rely on data from many individuals (Farina et al. 2015).

Preprocessing
The computational advancement of microcontrollers and microprocessors has allowed for the

realisation of the simplest and most generally used solution for noise reduction in ECG data,
recursive digital filters of the finite impulse response (FIR) (Carnevale et al. 2017). These
techniques are useful for reducing the volume of specific frequency ranges, such as those of
electrical network noise (50 Hz or 60 Hz), since the reject-band filter may be applied rapidly and
with little effort. The lack of certainty in the noise's frequency makes this method difficult to
implement, however filtering the signal into narrower bands can help. Unnecessary filtering
using high-pass and low-pass settings can alter the signal's shape and render it useless for heart
illness diagnosis. To further reduce the background hum in the ECG readings, adaptive filtering
architectures were also used (Garica et al. 2014). However, as stated by Li et al. (2015), this
method is limited and does not provide significant benefits over the FIR digital filters. Using
adaptive filters based on neural networks, Kim et al. (2016) were able to greatly enhance noise
reduction by overcoming some of these challenges. When compared to the identical technique
employing linearly adaptive filters, this strategy proportionally improved QRS complex

identification.

Since wavelet transform-based approaches retain ECG signal features while preventing the loss
of critical physiological information and are computationally straightforward, they have been
widely used in the previous decade to eliminate noise. To lessen the impact of background noise
and baseline shifts in the ECG signal, Llamedo et al. (2012) suggested a wavelet transform
variant they named the multi-adaptive bionic wavelet transform. When compared to methods

based on the classic wavelet transform, this one showed substantial improvement.

Noise reduction in other ways has also shown some promising findings. Melillo et al. (2015),
used nonlinear Bayesian filters to suppress background noise in ECG signals, and their findings
look promising. The greatest success to date has been achieved by a novel algorithm based on
the Extended Kalman Filter, which combines the parameters of the ECG dynamic model for
ECG noise reduction and signal compression. It is important to keep in mind that the signal-to-

noise ratio is how the workers present their findings. A variety of preprocessing techniques for
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the ECG signal are investigated, however, the approach used is inextricably linked to the study's

goal.

Methods that seek to automatically classify arrhythmias have a different preprocessing
requirement than those that seek to segment heartbeats from the ECG signal (i.e., detection of the

QRS complex, other waves, or fiducial points aimed at heartbeat delimitation).

Segmentation
Some algorithms suggest identifying other waves that occur alongside heartbeats, such as the P

wave and the T wave, which can be helpful for arrhythmia classification approaches due to the
additional information they provide. Although heartbeat segmentation is not the primary focus of
this study, it is important to keep in mind that mistakes made at this step might have far-reaching
consequences for the final categorization of the arrhythmia system and hence should not be taken
lightly (Li et al. 2015). Most of the studies evaluated here used databases in which heartbeat
segmentation-related events (such as the identification of the R peak or the QRS complex) are
already recognised and labelled, making the segmentation step as easy as a search of a labelled
event in the database. Because of this, database labelling is prone to human mistakes, yet the
findings presented by these studies do not account for the influence of the segmentation stage.
Consequently, comparing the effectiveness of various segmentation algorithms on automated
arrhythmia classification approaches may be a fruitful line of inquiry. To determine whether their
feature extraction strategy is reliable in the face of a specific segmentation problem, the R-peak
mislocate error, Kim et al. (2016) suggested a test. An error was introduced to the R-peak
annotations, and it was dispersed according to a Gaussian noise model. The researcher

recommends that future efforts attempting automated heartbeat categorization include such a test.

Obtaining Features
The feature extraction phase is crucial to the effectiveness of cardiac arrhythmia classification

using the ECG data. What constitutes a characteristic of a heartbeat is whatever information can
be gleaned from it and utilised to identify its specific kind. The characteristics can be gleaned
from the time-domain and/or frequency-domain morphology of the ECG signal, or from the heart
rhythm itself. Feature selection and feature extraction are two distinct procedures, even though
the phrases are sometimes used interchangeably (Mastoi et al. 2019). Feature selection is the

process of picking a collection of features that are the most representative to enhance the
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classification stage, whereas feature extraction is the step characterised as the description of a

heartbeat.

The RR interval, which measures the time between heartbeats, is the most often reported
characteristic in the medical literature. The RR interval measures how long it takes for one
pulse's R peak to occur in relation to the preceding or the following heartbeat. Apart from
pacemaker patients, changes in the morphology of the curve, which are often triggered by
arrhythmias, relate to changes in the breadth of the RR interval. Some writers have built their
strategies on exclusively utilising the RR interval characteristics because of their high
discriminatory power. Common implementations of this feature exist for noise suppression, such
as averaging a patient's RR interval across a given time. The classification results can be greatly
enhanced by using a normalised RR interval, as demonstrated by Ortin et al. (2019). Under the
inter-patient paradigm, the results of that work are equivalent to those of the state-of-the-art
approaches because only normalised RR intervals are employed. Normalized RR-intervals'
efficacy was verified by feature selection methods, as demonstrated by Qurraie et al. (2017). In
addition to the distances between the fiducial points of a pulse, various properties may be derived
from the heartbeat intervals and can be found in the literature. The most used is the QRS interval,
which is the time it takes for the QRS complex to complete. The QRS interval can be a useful

diagnostic tool since it varies in response to different kinds of arrhythmias.

Researchers say that wavelet transformations are the best methodology for extracting
characteristics from the ECG signal, even though many other methods have been investigated by
Raj et al. (2017). In contrast to the conventional Fourier transform [98], which only provides
analysis in the frequency domain, the wavelet transforms permit information extraction from
both the frequency and temporal domains. Discrete wavelets transform (DWT) is the most often
used type of wavelet transform for ECG signal categorization because of its simplicity of

implementation.

Since continuous wavelet transform (CWT) avoids the coarse representation and instability of
DWT, it has been utilised to extract features from ECG data [99]. While CWT can be useful as
an analyzer, it is not often employed since its implementation and inverse are not included in
common toolboxes (like the MATLAB wavelet Toolbox). Even while Ye et al. (2016)

computational cost as a drawback for adopting CWT, it has been used effectively on even basic
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medical equipment for at least a decade already. Finally, Li et al. (2016) argue that DWT and
CWT should be adopted since they are superior to current approaches, in which just one of the

transforms is used by the authors.

Kim et al. (2016) state that the final performance of the classification model is highly dependent
on the mother wavelet function selected for feature extraction. It is necessary to carefully
consider this option so that no vital information from the ECG signal is lost. Parameters that
affect arrhythmia classification outcomes include filter order and amount of decomposition in
addition to the mother wavelet function selected. According to the findings of Garcia et al.
(2017) using the Particle Swarm Optimization (PSO) method to fine-tune these values yields

better outcomes.

To create a real-time, patient-tailored ECG beat classifier, this research makes use of the echo
state network (ESN), a type of reservoir computing (RC) model. In reservoir computing, a
random excitable medium is used to transform a signal from a lower-dimensional (linear
transform) space into a higher-dimensional (nonlinear transform) space. RC has been proposed
as a computational paradigm for "unconventional” physical or computational media, meaning
those that are not based on neural network models or digital computing circuits, by researchers in
computing theory and microchip technologies due to the broad applicability of the notion.
Designing implantable or wearable biosensors, processors, and controllers based on this
computational method is encouraging since functional reservoirs have been successfully
constructed in electrical circuits, optical media, or chemical (molecule) substrates. As will be
shown below, when trained and evaluated on ECG recordings chosen from the MIT-BIH
arrhythmia database, the model delivers a predictive solution to the electrocardiogram (ECG)
beat categorization problem that beats the existing state-of-the-art. This reservoir model is
demonstrated to be compatible with the Dynap-se process- or, neuromorphic hardware used to
create analogue spiking neural networks, thanks to the application of the concept of "reservoir
transfer learning."

Methods of ECG Classification

Automatic ECG beat classification has made considerable use of decision-tree techniques based
on numerous characteristics retrieved from each heartbeat. A typical heart rate segmentation,

feature extraction, and classification module make up the backbone of such a system. Most
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cardiac beats are first segmented using non-overlapping sliding windows of varying sizes and
shapes (Farina et al. 2015). Then, a classifier is trained using a variety of temporal features (such
as the width and height of the QRS complex, the RR interval, and the area of the QRS complex),
frequency domain descriptors (typically extracted using power spectral density (PSD) or discrete
Cosine transform), time-frequency domain representatives (obtained using discrete Wavelet
transform), and features extracted from the phase-space reconstruction of ECG recordings. The
variability in ECG beat shape and temporal characteristics among patients, patient groups, and
the same patient throughout activity stages presents considerable difficulty in analysing these
properties. As a result, it appears that there is tremendous potential value in exploring patient
adaptability.

The classification section has used a variety of methods for distinguishing between heartbeats,
including ANNs, SOMs, SVMs, linear discriminators, conditional random fields, and neuro-
fuzzy networks [3, 25, 26]. As far as I'm aware, this is the first study to suggest using a "mixture-
of-experts” (MOE) technique to show that it's possible to make an ECG beat categorization
algorithm that can be customised for each individual patient. Twenty ECG signals were
randomly picked from the MIT-BIH arrhythmia database, and the overall performance
parameters were reported as 94.0 per cent accuracy, 82.6 percent sensitivity, and 97.1 percent
specificity. After that, a patient-specific heartbeat classification scheme was proposed using a
fuzzy-hybrid neural network consisting of a fuzzy c-means classifier and an MLP neural network
trained to distinguish normal from abnormal cardiac beats based on features such as the variance
of the wavelet transforms, the third-order cumulant, and the autoregressive (AR) model
parameters. Accuracy of 93.5 percent, sensitivity of 99.6 percent, and specificity of 95.3 percent
were achieved on 7 ECG recordings from the MIT-BIH arrhythmia database. A small sample of
each ECG signal was used for training and testing the classifier (i.e., 200 heartbeats). A three-
class classification technique was established to identify normal beats, premature ventricular
contractions (PVC) beats, and other beats in two-lead ECG recordings using cross-spectral
density information retrieved in the frequency domain (Acharya et al. 2018). It was demonstrated
that using the method with 40 files from the MIT-BIH arrhythmia database led to a classification
accuracy of 95.51-96.12%. It has been proposed that treating ECG waveforms as data-packet
streams and employing packet-processing techniques might help define ECG patterns that are

unique to a patient. The technique uses wavelet analysis with adaptive thresholding to perform
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preprocessing and feature extraction on an electrocardiogram (ECG) based on the accurate
localisation of fiducial ECG points. The MIT-BIH arrhythmia database includes 47 files, and the

overall classification accuracy was reported to be 97.42% (Garcia et al. 2017).

Computing in a Reservoir
Reservoir computing is a framework for designing, training, and analysing recurrent neural

networks (RNNs) for processing time-dependent information, and it was inspired by the brain's
capacity to do so. You may think of a reservoir computer as having three primary components.
An enormous, randomly connected recurrent neural network (the "reservoir™) receives the input
signal at the input layer (Wu et al. 2016). This dynamical system's internal variables perform a
non-linear mapping of the input signal into a signal space with more dimensions (i.e., reservoir
states). The time-varying output of the reservoir is calculated as a linear combination of the
reservoir states in the output layer. Any number of all-to-all (random) feedback links between the
network's output and reservoir might be incorporated into the design, depending on the specifics
of the task at hand (Teijeiro et al. 2018). The RC approach recommends just adjusting the output
weights to reduce the mean square error between the goal and the output signal, in contrast to
more conventional (and "deep"™) RNN training techniques. Input weights and reservoir
connection weights can be chosen arbitrarily within certain bounds to achieve optimal
performance. Since only the output connections require training, and the optimization of the
output layer requires just a linear regression, training techniques are computationally fast and
easy to understand (Llamedo et al. 2012). Since the input signal is nonlinearly expanded into a
high-dimensional (reservoir) signal space, reservoir computers can efficiently complete a wide
variety of complicated tasks on time-dependent signals with little effort on the part of the user in
terms of training time (Mastoi et al. 2019). Reports of successful applications of research-based
computing range from nonlinear channel equalisation and time series prediction to voice

recognition and robot control.
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Chapter 3: Methodology
In the detection of CVDs and arrhythmias patient specific ECG analysis is highly essential. The

methodology followed in the project is quantitative in nature as the techniques in machine
learning algorithms are followed in conducting the research. The method will make use of ESN
classifiers as they are based on RNN where the output layer weights are trained. This approach is
useful to handle real-time data in the RC framework. The methods of signal processing are used

in Matlab software in the project. The basic steps followed in the project method involve:

Pre-processing of ECG signal
As mentioned earlier patients' ECG forms the input for the system. ECG signals contain noise

signals and contaminated signals, and they must be initially de-noised. In the approach, the
variegated ECG signals are the initial input for pre-processing. Noise and unwanted signals come
in ECG due to patient movement or vibration while the physiological signals are recorded.
Another unwanted signal is power line interference that occurs due to the results due to
respiration as it can show variations in the actual information. The noise and unwanted signals
are removed in the pre-processed stage to eliminate problems in extracting hidden features of
information in the raw ECG signal (Robinson et al., 2021). This pre-processing is needed to

ensure accurate and relevant ECG signals to extract features and classify beats.

The removal of noisy physiological signals for high-performance data will involve the usage of a
median filter to remove unwanted signals in the ECG signal. In this method, the median value is
calculated by the use of two median filters of varying lengths using Matlab. The medfiltl
function in Matlab is implemented to filter the ECG signal in 1 dimension. The medfiltl function
will remove the unwanted distortions or outliers in the ECG signal. A set of differential
equations are used to derive the values of the slope. Subsequently, the values obtained in output
from the ECG waveforms are squared to determine R- peaks in the signal without noise. The

values of the related R wave, R-location and R-wave amplitude are stored as a matrix form R™™,

Heart Beat Segmentation
The ECG recordings are segmented into heartbeats by extracting the signal surrounding each

heartbeat in the annotation. In this stage of the approach, the heartbeat is segmented after
detecting the peaks. The detected peaks are further determined as an R™™ matrix to select the
location of R as a reference point. Here, R- the peak position is determined for the sample data

along with the intervals in seconds to form the single heartbeat segment. The segmented
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heartbeat usually will have samples gathered starting from 0.2 seconds to 0.32 seconds next to
the fiducial point. The fiducial point provides the heartbeat position in the signal (Mejia-Mejia,
May and Kyriacou, 2022). The heartbeats are segmented and normalized to mean as 0 and
standard deviation as 1. The area segmented in the QRS-complex to indicate start-end points
respectively that are shown as Q and S waves respectively, while the R wave indicates the area
under the peak. The combined waves namely Q, R and S waves provide the ventricular de-
polarization of a heartbeat. Ventricular depolarization indicates the electrical impulse conduction

by the ventricles. The output segments are further subject to feature extraction.

Extraction of Features
The ECG wave features extracted based on normal heartbeat and abnormal heartbeat. A normal

heartbeat is determined by the regular RR intervals, that has P- wave and narrow QRS complex.
Contrarily abnormal heartbeat will have RR-interval in narrow form and P-wave will be absent
with a wider QRS complex. The time duration between two RR intervals will represent the

duration between two successive heartbeats. The RR-interval features are,

e The previous RR interval refers to the difference in time between the previous and
current heartbeat.

e Subsequent RR interval provides time duration between current and subsequent heart
beats respectively.

e Average RR is the average of n number of heartbeats from the recordings in ECG.
Average is the calculation made from previous RR intervals.

e Standard Deviation of successive differences (SDSD) refers to the difference between
adjacent RR intervals. This feature provides the physiological signals related to the

arrhythmia condition.

The discriminant features will use the area in each heartbeat waveform. The mean('Beat’)
represents the averages of all values of the heartbeat that is segmented. The mean('Beat’)
indicates the average of absolute values obtained from the derivative in the segmented heartbeat.
Here, the derivative is determined using the formula for central difference as the abnormal
heartbeat will provide a broad area due to their wider QRS complex. Further, the abnormal
morphology beats exhibit a rise and fall slower compared to the morphology of normal heartbeat

signals. To evaluate the variability of heartbeats to distinguish between normal and abnormal
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beats, a patient-adaptable approach is followed. This approach involves a reference beat that is
based on the estimation of normal morphology and supra-ventricular origin heartbeat of each

patient.

The above quantities provide the measure of variability in heart rate as RR- intervals in
milliseconds. Subsequently, the features extracted will be processed using the ESN classification
algorithm.

Classification using ESN

The ESN is the classification algorithm that is the main component of the RC paradigm. The idea
is the input of the random projection in a reservoir with high dimensions. Another advantage of
ESN is that it will eliminate the over-fitting problem. The advantage here is that the internal
connections found in input and neurons do not need training. This leads to free parameters in the
system having constraints in output weights. In the case of any standard ESN, RC will involve
RNN that randomly sets the weights in input, biases and connection weights in neurons found
internally. ESNs will perform with topology having deterministic connections and as well as
random input weights. The advantage here is that they can be implemented easily in hardware.
Here, a main type of ESN architecture is selected to develop a model with efficiency for
implementation in processing the real-time ECG signal. A cyclic-based ESN architecture in the
form of a ring is chosen as it provides random links between neurons. The basic representation of

the cyclic ESN architecture is shown in figure 1. The reservoir network input is the ECG data.
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Figure 1: A standard cyclic ESN architecture (Mastoi, Wah and Raj, 2019)

The cyclic ESN model for ventricular heartbeat classification is used for its advantages in the
capability of high-speed processing with low power consumption. The activation vector for ESN
(Mastoi, Wah and Raj, 2019) is provided in equation (1).

s(n) = glveWmF() + aW,(n—1) (1)
Here, s(n) € R a represents the state or the activation vector.

Ny indicates the neurons found in connection weights, and W € RNxXNa js a random matrix. Ng
indicates the input vector dimension. The parameters v and a represent the connection scaling
inputs and F(n) indicates the features of the vector as input of heartbeat with dimensionality
value. In ESN the activation function is referred to as the sigmoid function and made 0 by
shifting it symmetrically. Ny is the linear combination of the activation function s(n) and ESN

model output provided by equation (2).

y(n) = gWes(n)) (2)

Here, W4t € RNoutXNx js the matrix with weights to show links found in ESN neutron and
different output nodes. This method is further extended to determine the weight of bias and
feedback between the response function. RNN in the RC framework will remember the input

thus enabling it to predict accurately over time and hence reliable when working with log time
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series data. Since ECG signals vary extensively with time it is easy to classify between normal

and abnormal heartbeat using ESN.

The overall approach is represented by figure 2 to show the processes.
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Figure 2: The steps involved in the project method

The proposed method is based on ESN. This will classify the heartbeat based on pre-processed
ECG signals and will be based on morphology namely normal and supra-ventricular heartbeats.
This classification is based on two stages. The first stage will obtain an ECG signal from the
patient and filter followed by detecting heartbeat, segmentation and feature extraction. Here, the
time difference between heartbeats in the model is included along with morphological
characteristics. In the second stage the classification is done between supra-ventricular and
normal heart beat is classified using ESN cyclic topology to achieve classification between

abnormal and normal heart conditions.

Databases used in the project
The proposed method of heartbeat classification is evaluated using standard arrhythmia ECG

databases namely MIT-BIH arrhythmia and AHA. These databases provide the standard
parameters or attributes for evaluating arrhythmia classifiers. The database is considered because
they contain annotations to indicate the heartbeat classes and is verified by specialists and
independent researchers. The databases follow the mandate standards as in the Association for
Advancement of Medical Instrumentation (AAMI) for evaluating ECG classifiers. The
annotation labels consist of mainly five types namely normal heartbeat, supra-ventricular ectopic
beats (SVEB), ventricular ectopic beats (VEB), fusion (F) beats and unclassified beats. Due to

these reasons, the databases are considered in the project.

The American Heart Association (AHA) Ventricular Arrhythmia ECG database is used in the
project as these datasets consist of ECG for testing the ESN classifier to detect heartbeats for
arrhythmia condition for its effectiveness. The ECG signal recordings are classified as a
ventricular-ectopic beat (VEB), supra-ventricular ectopic beat (SVEB), fusion beat (F),
unclassified and paced beat (Q) and non-ectopic beat (N).

Training and Test Data

Both the MIT-BIH and AHA databases are split into separate datasets for training and testing.
Here, DS1 is the training and DS2 is the testing dataset respectively used separately in both
databases. The training and testing data are selected to maintain a balance between the type of

heartbeats and the number of ECG waveforms in each dataset. The classifier is optimized using
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DS1 and evaluated using the DS2 dataset. Further, the heartbeat of the same patients in the train
and test datasets can have bias and hence the output is not replicated. For the MIT-BIH datasets,
the DS1 dataset used were 22 and 44 ECG records and 22 records for DS2. In the AHA database,
DS1 used 79 ECG records labelled as series=0, and 75 records for DS2 labelled as series=1.
Performance Metrics

The ESN classifier performance evaluation is based on the MIT-BIH database and AHA
database with unit lead as a basis. The standard statistical measures are used namely Sensitivity

(Se), specificity (Sp), positive predictive value (PPV), Accuracy (Acc) and F1 score.

The formulas for metrics are,

¢ - TP
¢ (TP +FN)
. - TN
P " (TN + FP)
PPV = ————
(TP + FP)
(TP + TN)

ACC = TP TN + FP + FN)

In the above equations, TP is True Positive, TN is True Negative, FN is false negative and FP is
False Positive respectively. The F1 score calculation is based on the harmonic mean of Se and
PPV in the formula,

2(S, - PPV)

F1 Score = ——¢ 2
Ore =S, + PPV)

The F1 score will select the optimum parameters for the ESN classifier in the training phase.

The ESN classifier will classify the processed ECG signals based on two classes of morphology
namely SVEB+ (Supra-ventricular ectopic beats), and Ventricular ectopic beats (VEB+). The
SVEB+ class is further classified as N or normal and supra ventricular ectopic as S or SVEB

heartbeat. The SVEB heartbeats show normal morphology with supra-ventricular origin. The
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VEB+ presents ventricular origin with abnormal morphology. The VEB+ class is made up of

ventricular ectopic beats VE and fusion beats (F).

The beat class distribution and scores from evaluation along with metrics are explained in the

results and findings are discussed further.

Chapter 4: Findings and Results
The heartbeat classification uses the MIT-BIH arrhythmia database and the AHA database. MIT

BIH is used normally by researchers in evaluating arrhythmia classifiers. MIT-BIH database
consists of ECG records for 48 hours and sampled at 360 Hz with two leads. One lead consists of
a waveform obtained from electrodes attached to the chest and limb, and the second lead is a
modified lead of V1. Contrarily, the AHA database has ECG recordings containing 30-minute
information on the beat class. The ECG records in AHA documentation mention two leads
namely A and B and are sampled at 250 Hz. As indicated earlier, the ECG classifiers are
evaluated using the standards of the Association for Advancement of Medical Instrumentation
(AAMI) and heartbeat annotation labels indicate N, S, V, F and Q heartbeats. Here, Q beats are
unclassified beats and hence not representative. With the standards of AAMI the ECG data that
has paced beats are removed, also importantly the AHA data will not be able to distinguish

between N and S beats.

The extraction of the ECG signal involves median filters applied in pre-processing. The lowpass
filter with a cutoff frequency at k = 35 Hz is used for noise removal and outlier removal as in

figure 3.
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Figure 3: Representation of noisy ECG signal
After filter application, the noisy signals and outliers are removed, as represented in figure 4.
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Figure 4: ECG Signal representation after noise removal

Subsequently, the peaks are detected by first obtaining high slope values using the differentiation
equation. Next, the R-peaks are obtained by squaring the output signals and lastly the sum of all
values was made on the slope of the R-wave. The values of R-wave, R location and amplitude

are stored on the R™™ matrix. The detected peaks are shown in figure 5.
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Further, the heartbeat is segmented after detecting the peaks. The R™™ matrix is used to choose

the R location as the point of reference. After determining the position of the R-peak, the

waveform is sampled for a single heartbeat. The segmented area is shown in figure 6.
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Figure 6: The QRS area is shown in pink colour
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To obtain these peaks 200 samples were used from the database and to obtain the R peak, the
division of points included 75 and 125 on both left and right sides respectively of R-peak. The
samples were gathered in time from 0.2 seconds to 0.32 seconds. Using this approach the

temporal location of waves namely Q, S, P and T waveforms are extracted from the signal.

Based on the training and testing datasets, the beat class distribution is provided in table 2.

SVEB+ class VEB+ class
Database N S Vv F
MIT-BIH AR (DS1) 45,783 043 3,785 414
MIT-BIH AR (D52) 44,179 1,834 3,216 38
AHA (DS1) 158,587 15,075 292
AHA (DS2) 156,992 15,8556 437

Table 2: Beat class distribution for both the databases

The ECG records are processed in the classifier as in the following steps,

1. The ECG signals are re-sampled. The processing is done at the rate of 250 Hz, the
common sampling rate. In this step, the AHA database at a frequency of 250 Hz
retains the sampling rate in its original form and the MIT-BIH database is re-sampled
at a frequency range - of 250 Hz from 360 Hz.

2. The ECG data is filtered to bandwidth v (Hz) € [0.5,0.35] to remove noise and
unwanted signals. In this step, a high-pass filter is used as a standard procedure.

3. The heartbeat is detected by determining the position. The databases provide
annotated positions and hence those positions are used to determine the heartbeat. In
the case of the MIT-BIH database, the large minimum or maximum value in QRS
complex function denotes the annotated position, this is used.

4. The RR interval is determined. This interval is the time duration between two
successive heartbeats. Suppose if RR interval denotes heartbeat i, the time difference

(i — 1) represents the difference in time duration between i and the previous heartbeat

(i - 1).
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5. The heartbeat is segmented from the segmented position of data in each of the
databases. The segment size is 240 ms in the project and the segment is around the
annotated position.

6. Lastly, each heartbeat is normalized in the range [-1, 1]. In this manner, the signal is

separate and becomes independent from the original ECG signal amplitude.

In the above processing of ECG recordings, each heartbeat must be represented as a set of
features. The main reason for feature selection is to ignore complicated features that can lead to

high computing costs. Hence the simple method is considered for feature extraction.

Here, the raw waveform for each heartbeat is used and the position of the heartbeat is
represented. The original raw data as a waveform in each heartbeat indicates equally the number
of samples having both sides as the reference point in annotating heartbeats. Further data from
RR intervals are added to heartbeat features to understand characteristics related to the temporal
nature of each heartbeat signal. The RR intervals are the features usually used in the arrhythmic

classification of heartbeats. The heartbeat features for i heartbeat are,

() The original data of 60 heartbeat waveforms is centred around the annotated position for
the heartbeat

(i) The current RR- interval logarithm value is represented as In(RR(i))

(iii) The next RR-interval logarithm function is represented as In(RR(i+1))

(iv) The average measure of 250 RR- intervals are represented as IN(mean). The mean is the

average of n neurons with RR intervals, in this case, n < 250.

The process stages and feature extraction are done by representing each heartbeat as one vector
with d-dimensions. Three features are found in the vector, namely RR- intervals, morphological
features, and samples of ECG waveform. These features have a relation to RR- intervals. Here

the vector with d-dimensional, d = 63 provides input for the classification algorithm.

The ESN classifier algorithm
As mentioned earlier, the ring topology is used in the ESN classifier and implemented in RC. RC

is a paradigm in ML is a successful RNN approach that makes use of the layers namely input,
reservoir and output layers. The ECG input stage is given to the RC network to result in a change

of dimensions from d x Hp to N x Hy. Here, the number of input features is indicated as d, He
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represents the heartbeats and the neurons are denoted as N. The random input matrix represented
as Wi, is generated in uniform distribution that is an element of [-1, 1]. Therefore, the data

features from ECG original vector, ug,;, changed as in equation Xyypp, = (Wiky X Ugxun)-

The input data sent to the reservoir will proceed sequentially where further computation is made

iteratively in the reservoir. Here, r is the matrix response in the reservoir for an n' heartbeat for

classifier standard ESN is provided by expression r(n) = F(yX(n) + nWr(n — 1)).

In this expression, W represents a square matrix with a random connection and has N x N
dimensions. The activation function of ESN is represented as F. The quantities y and 7 represent

the scaling parameters for input and connection respectively.

In ESN, the random square matrix W is generated using the uniform distribution in the range [-1,
1]. This will define weights that provide connections between neurons internally. In the case of a
non-linear function, the exponent and bias in the classical sigmoid function are used because
sigmoid functions in reservoir computing provide outputs optimally. Using simple linear
regression, the reservoir response and output connections are only optimized. The input r(n) by
the ESN will calculate the output given by the quantity, §(n) as y(n) = W°%r(n). In this
expression, W94, is the quantity for output weights in the ESN. Here, | represents output nodes.
The linear regression model is used in calculating the output nodes. Here, the error is minimized
between the outputs of training data and the associated values of the target class. The output is
continuous and represented as expression y(n) is converted to binary through a decision
threshold. Usually, with ESN classifiers, W the connection matrix is referred to as a sparse
random matrix. The ESN classifier with ring topologies performs better with the standard
random connection matrix. In the study, the ring topology of ESN is used as it provides fixed
connections at random in the input function W™ and with fixed weights having deterministic and

in between internal neurons in the reservoir.

Also, the topology selected can easily explore system parameters contrarily, ESN classifiers with
random topologies need more computing power. ESN ring topology is easy to implement and

does not need high computing power.
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Chapter 5: Analysis and Discussion
The ECG datasets were processed using an ESN classifier based on RNN that has input and

connection weights at random between the neurons. RC response will be easy to classify because
the input is mapped non-linearly and has high dimensions, compared to the original input
through a simple linear regression technique. The classifier is evaluated using optimal
parameters. The final evaluation is done using the testing dataset DS2 which is not equal to the
training dataset (DS1). The classifier performance is obtained with dataset DS2. In the training
phase, the parameters of individual ESN are optimized. The original ECG signal is normalized in
[-1, 1]. Hence there is a similarity between the RR- intervals in the datasets. The optimum
parameters for ESN are 1= 0.2, y = 0.1 and N = 1000 as they are found to be associated with
both MIT-BIH and AHA datasets. The VEB performance measures were obtained from the

dataset as in table 3.

Database  Lead Se (%) PPV (%) Sp (%) Acc (%)
MIT-BIHAR i 84.4(82.9) 95.8(85.5) 99.7(98.8) 98.6(97.7)
V' 81.5(78.9) 7B.2(66.0) 98.0(96.6) 96.8(95.3)
AHA A 00.4(87.2) 94.9(92.4) ©0995(99.2) 98.6(98.5)
- 87.0(85.8) 80.5(83.4) 08.9(98.2) 97.8(97.0)

Table 3: The performance measures of VEB heartbeat using 30 ESN

The performance measures in the table obtained using two leads for both databases indicate the
accuracy is above 98%. This implies lead Il of the MIT-BIH dataset provides the best results.
Here, the ensembles will minimize overall errors in a single ESN. The ensemble significantly
reduces false negatives to result in higher PPV. The capability for generalization for both SVEB
and VEB classifiers provided promising results. The generalization capability was achieved by
training the AHA database for both leads A and B. This AHA dataset provided better
generalization potential compared with MIT-BIH datasets. The ensemble performance and F1

score are shown in the graph, figure 7.
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Figure 7: ESN classifier performance obtained with = 0.2, y = 0.1 and N = 1000

To compare the performance of the ESN classifier with another standard classifier, the
classification model using CNN was explored. In this model, the datasets used were the same,
MIT-BIH and AHA. The method will automatically classify VEB beats using wavelet transform
of ECG and CNN. The wavelets used in this method are Morlet Wavelet, Paul wavelet and
Gaussian Derivative. These wavelets were transformed as divisions of single-channel ECG
waveform to the 2D image of a certain frequency. The images of time frequency were further fed
into the CNN to optimize the convolution filters and are classified. This method made use of a
tenfold evaluation using the arrhythmia database MIT-BIH. The AHA datasets were used

separately to evaluate the trained network.

The ECG recordings from the MIT-BIH database were allocated as ten data subsets randomly.
The approach of random grouping was made by gathering the numbers instead of the total
heartbeats, where data of one record will not be present in both the training and testing datasets.
The CNN model was provided with a 5/6 heartbeats waveform to directly train the model and 1/6
heartbeats were used to validate the learning process and optimise model parameters and prevent
overfitting. The trained model was tested and the process was made using 10 iterations and

results for each fold were combined.
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As indicated earlier, the performance metrics namely Acc, Se, Sp, PPV and F1 scores were
determined to evaluate the algorithm performance. The statistical measures were obtained and
for each test fold in the datasets, the beats were identified whether they are correct or incorrect

along with true positives, true negatives, false positives and false negatives.

The gross test results of the model were obtained. The F1 score was high as shown in figure 8.

wor
e
i".‘-'a
a0 .
~ 80
&
@
h
g 70
@
T
i i
Arc
‘ F1
S0 se |
...... -5p
PRy
40 :
i} 1 2 3 4 5 i

Window length (5]

Figure 8: The gross test performance showing different metrics

The training results indicate the Paul wavelet provided the best test performance with accuracy at
around 97.9%, Sp is 99.1%, and PPV at 87.2%, sensitivity at 82.6%.

With the AHA database, the algorithm could obtain 97.6% accuracy, 82.2% sensitivity, 98.8%
specificity and 87.2% PPV. The results were averaged to obtain the evaluation measures, that

indicate the model has the potential for good performance in classifying ECG waveforms.

Discussions

The method using the ESN classifier provides good results for VEB heartbeat with MIT-BIH and
AHA databases in detecting ventricular arrhythmia. The classifier approach with ESN is found to
be ideal in processing ECG signals obtained in the long term and can be used for large databases
as minimum computational requirements are needed for feature extraction and the algorithm.

Further ESN presents advantages over the classical methods that make use of SVM, NN, CNN or
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decision trees and so on. This was checked with the computational performance and performance
metrics with the other model using the same databases. In the compared work a learning network
using CNN was used to distinguish VEBs from ECG waveforms using the same types of input.
This method is not computationally intensive and tends to show promising results during testing
and validation.

The metrics value obtained from both methods is shown in Table 4.

ESN Classifier CNN classifier model
Metrics

AHA MIT-BIH AHA MIT-BIH
Accuracy 98.15 96.1 97.5 97.3
(ACC)
Sensitivity 86.9 78.4 82.5 82.8
(Se)
Positive 93.4 79.9 82.3 87.2
Predicted
Value (PPV)

Table 4: Performance metrics values obtained from both the methods

The results indicate the accuracy values obtained from ESN are slightly higher in terms of the
value obtained for AHA. In the case of the MIT-BIH database, the accuracy value is slightly
higher compared to the accuracy value obtained in the ESN classifier. The sensitivity values
obtained from the ESN classifier are higher compared to the values of sensitivity determined
using the CNN classifier model. This indicates the RC paradigm in the ESN network provides
better performance in processing ECG waveforms with variations. The PPV values provide
higher measures for the Aha database using the ESN classifier, whereas with MIT-BIH datasets
the values for PPV are lesser compared to the PPV value obtained from the MIT-BIH dataset

using the CNN model.
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Based on the comparative evaluation and determination of metrics the ESN classifier provides
better results in accuracy, PPV and sensitivity compared to other models based on the CNN
algorithm. Therefore, it is noted that the ESN classifier based on the reservoir computing model

shows good potential in classifying arrhythmia conditions from ECG waveforms.

Conclusion
The project presents the processing of ECG datasets using an ENN network based on the

reservoir computing paradigm. The project aims to overcome the challenges in ECG
classification due to the increase in cardiovascular diseases and related conditions. Over the
years several studies highlight the use of ML models and algorithms to automatically classify
heartbeat variations using ECG datasets. The project focuses on the CVD condition named
arrhythmia to classify ECG heartbeats using standard ECG databases from MIT-BIH and AHA.

The ESN classifier based on the reservoir computing paradigm is considered in this study for its
accuracy and low hardware requirements. The study is made by first understanding existing
research related to the topic of arrhythmia classification using standard classifiers based on ML
models. A comprehensive literature review is made to understand the clinical applications of
ECG waveform data. The ECG waveform data must first be pre-processed to remove noisy
signals from the ECG waves. This is followed by processes involving heartbeat segmentation,
extracting of the features and finally classification of heartbeats. Lastly, the ESN classifier is fed

with clean ECG datasets to determine between heartbeats that are normal and abnormal.

The methodology section provides the details of each step followed in the project. As mentioned
in the report, the datasets from MIT-BIH and AHA databases were processed using the ESN
classifier to determine heartbeat variability in each heartbeat waveform. The reprocessing steps
include the use of the filter to remove noise signals and outliers before heartbeat segmentation. In
the project, the techniques of signal processing are employed and used to eliminate unwanted
signals in the ECG signal before it is provided as input to the classifier. This is followed by
heartbeat segmentation, the heartbeat segmentation is based on the QRS complex. In this phase,
the R peaks and location is determined and the QRS area in the ECG signal is obtained. The
feature extraction will extract RR intervals between two successive heartbeats. It is noted the

heart-rate variability measure is the time interval between two successive heartbeats measured as
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RR- interval in milliseconds. The extracted features are the pre-processed ECG waveform that is
fed to the ESN classifier.

In the project, the ring topology ESN architecture is used for its efficiency and less power
consumption. The weight matrix is developed for the ESN model and the equations related to
input and outputs are provided along with the parameters. The standard performance metrics
namely accuracy, sensitivity, specificity, predictive power value, and F1 scores are determined to
understand the output performance of the classifier. The temporal wave features are processed in
the classifier for obtaining the performance metrics. The training and testing datasets are split
from both databases to train and evaluate the model. The performance metrics were determined

for the ESN classifier based on the RC paradigm.

The findings and results provide the outputs obtained from the model to highlight the different
processing steps. The beat class distribution is presented and the final processing steps for the
classifier are highlighted in the report. The ESN algorithm is presented for its internal workings.
The performance of the ESN classifier is obtained from processing the testing dataset from both

databases. The results are provided in the table.

To compare the ESN classifier, another standard model based on the CNN classifier was used to
classify variations in heartbeats using the same databases. The CNN-based model made use of
different signal processing methods and the same performance metric values were derived. A
performance comparison is presented is made to understand the determined values. It is noted
that the ESN classifier is more effective and accurate in classifying heartbeat variability
compared with the standard CNN model. Hence the ESN classifier based on RC has the potential

to classify different heartbeat conditions and support the diagnosis of CVD in patients.
Future work:

Future work on this topic will include processing more datasets in ESN to improve prediction
accuracy using different datasets and also evaluate the system for its effectiveness using real-

time data.
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