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Chapter 1: Introduction 

Background analysis 

Cardiovascular disease (CVD) is a condition impacting the cardiovascular system, which 

includes the heart and blood vessels. According to the World Health Organization (WHO), CVD 

is the leading risk factor amounting to about 17.9 million deaths every year around the world 

(Sahin and Ilgün, 2020). Around 32% of deaths are caused by CVDs and according to the centre 

for diseases control and prevention (CDC), heart diseases cause one death every 36 seconds in 

the United States of America (Ishaq et al., 2021). WHO further states that CVD causes 38% of 

the premature deaths caused by noncommunicable diseases in people under age 70.  

With CVD claiming 659,000 lives in the United States alone, several researchers intend to 

provide solutions to prevent deaths due to CVDs. To understand the causes of death it is 

important to know the most common cardiovascular diseases. The heart and blood disorders 

under CVD comprise numerous disorders associated with obstruction of blood flow through 

blood vessels supplying the heart, brain and other parts of the body.  

Cardiovascular 

disease 

Causes Incidents and deaths 

Coronary heart 

diseases  

Caused by obstruction of blood vessels 

flowing to the heart. 

126 million patients and 9 

million deaths in 2017 (Khan 

et al., 2020) 

Cerebrovascular 

disease 

Disease in the blood vessels carrying blood to 

the brain. It causes Stroke.  

12.2 million incidents and  

6.55 million deaths in 2019 

(Khan et al., 2020) 

Peripheral 

arterial disease 

Obstructions in the blood vessels carrying 

blood to arms and legs.  

113,443,017 incidents and  

74,063 deaths in 2019 (Lin et 

al., 2022) 

Rheumatic 

heart disease 

A condition caused by rheumatic fever 

(Streptococci bacterial infection) that affects 

the heart muscles and valves.  

33,194,900 cases and 319,400 

deaths in 2015 (Manpreet and 

Kalia, 2020) 
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Congenital 

heart disease 

A birth defect resulting in abnormal 

development of the heart. 

13.3 million patients and 985, 

000 deaths in 2019 (Manpreet 

and Kalia, 2020) 

Deep vein 

thrombosis 

Blood clots in the leg veins can slowly move 

to the heart ad cause blockage.  

900,000 incidents and 

100,000 deaths in 2022 

(Wang et al., 2022) 

 

Table 1: CVD disease causes and impact worldwide 

The primary causes of CVD mortality are sudden, premature heart attacks and strokes. Premature 

heart attacks come with slight variations in the functioning of the heart that accentuates over 

time. Intricate, early prediction of abnormalities in medical tests could help avert untimely 

deaths. Electrocardiogram (ECG) is a generic electronic device employed to analyze overall 

heart health. For decades ECG remains the main source of accessing and analyzing coronary 

health. Due to its simplicity, ease of use, cost-effectiveness and noninvasiveness, ECG is largely 

preferred to do basic or initial heart health monitoring. 

ECG measures the rhythmic activity of the heart over a particular duration. To perform an ECG, 

12 sensors are connected to the chest and limbs to measure the electrical signals. These signals 

coordinate with proper blood flow throughout the body. Thus, ECG is a straightforward way to 

measure abnormality in heartbeats. An ECG can detect heart problems, enlarged heart chambers 

and abnormal heart rhythm. This study focuses on an abnormal heartbeat problem medically 

called arrhythmia. An arrhythmia occurs when the electrical signals are asynchronous to the 

heartbeat signifying that the heartbeat is to slow or too fast. Arrhythmia remains as one of the 

primary signs of heart ailments. Not all arrythmias are fatal but when undetected they may lead 

to sudden heart failure and subsequent deaths. Usually, the illness progresses over time and 

causes sudden cardiac arrests (De Chazal, O’Dwyer, & Reilly, 2004)(Alonso-Atienza, Morgado, 

Fernandez-Martinez, Garcia-Alberola, & Rojo-Alvarez, 2014). According to (Srinivasan & 

Schilling, 2018), of the 17 million deaths caused by heart ailments, sudden cardiac arrests (SDC) 

aaccountto 25%. With ECG being the direct way to predict real time heart function variations, 

several researches have been conducted over the years to exploit pattern identification. 
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Establishing a real time pattern identification will predict even the smallest variations in the ECG 

over time, thus helping avert SDCs.  

Research Gap 

Over the past decade, novel algorithms have been performed over the ECG data to predict the 

variations in heart functions. Previous researches have undertaken learning algorithms like 

decision trees, k nearest neighbor (Castillo, Melin, Ramírez, & Soria, 2012)(Saini, Singh, & 

Khosla, 2013), support vector machines (Raj, Ray, & Shankar, 2016) (Ye, Kumar, & Coimbra,  

2016), neural networks (Dokur & Ölmez, 2001) (Martis, Acharya, & Min, 2013) (Inan, 

Giovangrandi, & Kovacs, 2006) and deep learning models. Several research have also researched 

upon ECG signal acquisition and processing using signal processing techniques like, time 

domain analysis (Zhang, Dong, Luo, Choi, & Wu, 2014)(Huang, Liu, Zhu, Wang, & Hu, 2014), 

filter banks, frequency domain analysis (Zidelmal, Amirou, Ould-Abdeslam, & Merckle, 

2013)(Garcia, Moreira, Menotti, & Luz, 2017)(Qurraie & Afkhami, 2017) and wavelet 

transformation (Ye, Kumar, & Coimbra, 2012) (Ye, Kumar, & Coimbra, 2016) (Elhaj, Salim, 

Harris, Swee, & Ahmed, 2016)(Mar, Zaunseder, Martínez, Llamedo, & Poll, 2011) to detect 

arrhythmia.  

Need for the research 

Previous research has classified irregularity of the heartbeats automatically (Arvanaghi, 

Danishvar and Danishvar, 2022). However, the learning ability of the automated classifier was 

not optimized and the database used was imprecise. Manipulating the real-world scenario is 

imperative to get accurate predictions. Similarly, Al-Turjman, Nawaz and Ulusar (2020) discuss 

the analysis of the data outputs of medical instruments, however, measurements can be imprecise 

and time-consuming. Using support vector machines (SVM) as discussed by (Martinez-Alanis et 

al., 2020) requires inputting an optimal set of RR intervals and wavelets. Shi et al. (2019) discuss 

a hierarchical classification scheme that implements Extreme Gradient boosting (XGboost) 

classifier to classify a single heartbeat. Despite the speed and accuracy provided by XGboost in 

supervised learning environments, it affects the impact balance. In addition, class sensitivity was 

not obtained in the outputs discussed. More heartbeat data should be inputted in the subject-

oriented analysis. The clustering algorithm discussed by Yang and Wei (2020) additionally 

inputs morphological errors to lessen interpretation dissimilarities, however, there were real-time 



7 
 

data constraints. The analysis of various research suggests that there is no existing algorithm that 

provides better detection rates for various arrhythmia stages.   

The outcomes of the research intended to achieve accurate classification of the heartbeat could 

be applied to monitor the health scenario of patients with ease. With the augmenting risk of 

cardiovascular illness and the corresponding deaths, early interpretation of abnormalities proves 

the best way forward in diagnosing illness. Providing a learning algorithm that could extract the 

ECG data and accurately predict abnormalities will pave way for early therapies that could save 

lives. In addition, the time spend on diagnosing the problem will be reduced.  

Research Aim 

The project aims to construct an effective heartbeat classification method to accurately classify 

heartbeats based on echo state networks a part of reservoir computing.  

Research Objective 

1. The primary objective is to classify the heart rate based on the QRS complex. The 

research process intended is as follows.  

2. To preprocess the ECG to get the baselines signal to ensure accurate classification.  

3. To segment the ECG signal and extract the temporal and wave features associated with 

the QRS complex.  

4. Classify the extracted features using the reservoir computing-based echo state network, a 

part of the recurrent neural network.  

5. Obtain high accuracy with enhanced features to solve ventricular classification problems.  

Research Questions 

The research will follow quantitative analysis trying to solve the following questions. 

1. How important is the research on ventricular heart rate classification in heart failure 

identification? 

2. What are the different algorithms that have rendered acceptable results on ECG 

classification? 

3. What are the disadvantages identified in the algorithms employed in previous research? 

4. How does echo state network classification improve the accuracy of ventricular heart rate 

classification? 
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Research Method 

The research will follow a quantitative analysis to develop a classification scheme to retrieve, 

enhance and analyze ECG data to detect ventricular heart rate variabilities. Classification is the 

primary way to optimize the detection of arrhythmia. The objective of the project is to develop 

an effective classification method using the echo state network part of the reservoir computing 

framework.  

The methodology adopted to pursue the research include four steps: Preprocessing the ECG 

signal, heartbeat segmentation, extracting features and classification. Variegated ECG signals are 

the input that will be preprocessed to extract the signal from noise. The baseline will be removed 

in the signal preprocessing to move into the segmentation phase. Signal preprocessing is 

necessary to remove the unwanted sections of the input signal to ensure relevance and accuracy 

during feature extraction and classification. In the segmentation phase, the heartbeat will be 

segmented based on the QRS complex, the deflections noted apparently in an ECG. The QRS 

complex represents ventricular depolarization, which represents the conduction of electrical 

impulses into the ventricles. The segmented output will be subjected to feature extraction where 

the ECG wave features will be extracted. The temporal features like the pre-RR intervals, local 

average RR interval, post-RR interval and global average RR interval will be included in feature 

extraction. The wave features that will be included are the PP interval, RR interval, PR interval, 

R interval and QT interval. RR intervals depict the ability of the heart to adapt to environmental 

changes, where the heart rate can be represented through RR intervals in a millisecond. 

Precisely, heart rate variability measures the time intervals between two heartbeats that are 

measured as RR intervals in milliseconds. The temporal and wave features will then be 

processed through classification, which will be performed through an echo state network. 

Reservoir computing-based echo state network is a part of a recurrent neural network. The 

importance of recurrent neural networks is that the machine learning system created will 

remember the input enabling it to predict accurate results on sequential data. RNN can remember 

inputs over time, making it reliable while working with long-time series data. With the Echo 

state network, it is easier to work with large non-linear data like the ECG which varies 

extensively with time.  
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Chapter 2: Literature Review 

Introduction 

Arrhythmia, a class of cardiovascular disease requires timely treatment. Arrhythmia constrains 

the blood flow to the heart and other parts of the body causing irreversible damage. In most 

cases, arrhythmia gradually affects the functioning of the heart, which when undetected could 

lead to sudden deaths (D’Errico et al., 2020). ECG is employed largely to determine the state of 

the heart and to routinely review the condition. Classification of heartbeat determines the 

irregularity of the heartbeat with time. The rhythm variations in arrhythmia could be too fast or 

too slow. Based on the classification of heartbeat, arrhythmia can be of two types: non-life 

threatening and life-threatening arrhythmia. The non-life-threatening arrhythmia leads to general 

heart function weakness which can be treated with therapy. Life-threatening arrhythmia causes 

tachycardia and ventricular fibrillation triggering untimely cardiac arrests. Bio-signals 

monitoring using ECG is quite challenging because of its non-stationary and nonlinear 

properties. Thus, various pattern recognition algorithms have been mapped with ECG analysis to 

effectively classify and detect abnormalities. The various kinds of literature classifying 

heartbeats vary in the following aspects: feature analysis, use of classifiers and evaluation 

techniques undertaken. The different features identified from the literature analysis include 

Higher order statistical features (Khoshnevis and Sankar, 2020), wavelet transformation (Tian et 

al., 2023), independent component analysis (Pion-Tonachini, Kreutz-Delgado and Makeig, 2019), 

Hermit coefficients (Brieva, Ponce and Moya-Albor, 2020) and morphological features. The 

classifiers identified from previous research include support vector machines (Martinez-Alanis et 

al., 2020), self-organizing maps (Nilashi et al., 2020), artificial neural networks (ANN) (Pandey 

and Janghel, 2018), linear discrimination analysis (LDA) (Liu et al., 2019), conditional random 

field (CRF) (Fang and Huang, 2021) and ensemble analysis. The evaluation schemes used are of 

two types class-oriented and subject-oriented evaluations. Class-oriented evaluation works on the 

generation of training and testing samples. Extensive ECG signal heartbeat segmentation results 

in more than a thousand individual records. When selecting random records for supervised 

classification there is a higher probability that the training and the testing samples belong to the 

same person (Cao et al., 2020). Class-oriented methods thus provide lower-quality 

generalization. On the contrary, subject-oriented methods as discussed in the paper by Bognár 
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and Fridle (2020) segment the data sets as training and testing sets before the segmentation of 

heartbeats. With feature classification and evaluation, it is possible to completely automate the 

process of heartbeat classification using advanced statistical approaches.  

Clinical Application of ECG 

Clinical applications of patient-specific electrocardiogram (ECG) analyses are growing in 

prominence. Newer generation event and Holter monitor systems, texture electrocardiogram 

recorders, and wearable devices with ECG sensors record and monitor real-time cardiac data 

across periods of days or weeks (i.e., beyond the typical 48 hours), enabling thorough statist ical 

analysis and a more nuanced picture of a patient's cardiovascular health. If an appropriate model 

is used to assess patient-specific diseases, real-time, individualised monitoring can also enable 

quick action or patient recalls. However, sophisticated automated algorithms compatible with 

developing hardware technology are required to manage this massive data and extract the 

important information for carrying out additional statistical analysis (Acharya et al. 2018). 

Arrhythmia detection and heartbeat categorization have been studied for decades, and many 

signal processing methods including frequency analysis, template-matching, discrete wavelet, 

filter banks, and hidden Markov models as well as variants of neural networks have all been 

used. However, more improvements are required in the field of autonomous portable ECG 

interpretation because of the lack of a full set of algorithms compatible with new micro-device 

technologies, which has limited the actual exploitation of automated ECG diagnostic devices 

thus far (Afkhami et al. 2016).  

When it comes to automated ECG monitoring activities like beat categorization, the substantial 

individual and group differences in the temporal course and morphology of ECG waveforms 

pose a significant challenge. One simple, but computationally costly, option is to use training 

data obtained from many people with a variety of healthy or pathological heart diseases to create 

a general classifier (Cuomo et al. 2016). If the data volume and complexity of the job are 

excessive, deep-learning-inspired algorithms will often adopt this approach to provide predictive 

analytic solutions. However, such a method confronts several obstacles when used for ECG 

diagnosis, including data collecting, beat annotation, and technological obstacles related to 

hardware implementations. A patient-specific classifier, in contrast to a generic model, allows 
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the classification algorithm to be tailored to the specific characteristics of each patient's ECG 

records by eliminating the need to rely on data from many individuals (Farina et al. 2015). 

Preprocessing  

The computational advancement of microcontrollers and microprocessors has allowed for the 

realisation of the simplest and most generally used solution for noise reduction in ECG data, 

recursive digital filters of the finite impulse response (FIR) (Carnevale et al. 2017). These 

techniques are useful for reducing the volume of specific frequency ranges, such as those of 

electrical network noise (50 Hz or 60 Hz), since the reject-band filter may be applied rapidly and 

with little effort. The lack of certainty in the noise's frequency makes this method difficult to 

implement, however filtering the signal into narrower bands can help. Unnecessary filtering 

using high-pass and low-pass settings can alter the signal's shape and render it useless for heart 

illness diagnosis. To further reduce the background hum in the ECG readings, adaptive filtering 

architectures were also used (Garica et al. 2014). However, as stated by Li et al. (2015),  this 

method is limited and does not provide significant benefits over the FIR digital filters. Using 

adaptive filters based on neural networks, Kim et al. (2016) were able to greatly enhance noise 

reduction by overcoming some of these challenges. When compared to the identical technique 

employing linearly adaptive filters, this strategy proportionally improved QRS complex 

identification.  

Since wavelet transform-based approaches retain ECG signal features while preventing the loss 

of critical physiological information and are computationally straightforward, they have been 

widely used in the previous decade to eliminate noise. To lessen the impact of background noise 

and baseline shifts in the ECG signal, Llamedo et al. (2012) suggested a wavelet transform 

variant they named the multi-adaptive bionic wavelet transform. When compared to methods 

based on the classic wavelet transform, this one showed substantial improvement.  

Noise reduction in other ways has also shown some promising findings. Melillo et al. (2015), 

used nonlinear Bayesian filters to suppress background noise in ECG signals, and their findings 

look promising. The greatest success to date has been achieved by a novel algorithm based on 

the Extended Kalman Filter, which combines the parameters of the ECG dynamic model for 

ECG noise reduction and signal compression. It is important to keep in mind that the signal-to-

noise ratio is how the workers present their findings. A variety of preprocessing techniques for 
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the ECG signal are investigated, however, the approach used is inextricably linked to the study's 

goal.  

Methods that seek to automatically classify arrhythmias have a different preprocessing 

requirement than those that seek to segment heartbeats from the ECG signal (i.e., detection of the 

QRS complex, other waves, or fiducial points aimed at heartbeat delimitation).  

Segmentation  

Some algorithms suggest identifying other waves that occur alongside heartbeats, such as the P 

wave and the T wave, which can be helpful for arrhythmia classification approaches due to the 

additional information they provide. Although heartbeat segmentation is not the primary focus of 

this study, it is important to keep in mind that mistakes made at this step might have far-reaching 

consequences for the final categorization of the arrhythmia system and hence should not be taken 

lightly (Li et al. 2015). Most of the studies evaluated here used databases in which heartbeat 

segmentation-related events (such as the identification of the R peak or the QRS complex) are 

already recognised and labelled, making the segmentation step as easy as a search of a labelled 

event in the database. Because of this, database labelling is prone to human mistakes, yet the 

findings presented by these studies do not account for the influence of the segmentation stage. 

Consequently, comparing the effectiveness of various segmentation algorithms on automated 

arrhythmia classification approaches may be a fruitful line of inquiry. To determine whether their 

feature extraction strategy is reliable in the face of a specific segmentation problem, the R-peak 

mislocate error, Kim et al. (2016) suggested a test. An error was introduced to the R-peak 

annotations, and it was dispersed according to a Gaussian noise model. The researcher 

recommends that future efforts attempting automated heartbeat categorization include such a test.  

Obtaining Features  

The feature extraction phase is crucial to the effectiveness of cardiac arrhythmia classification 

using the ECG data. What constitutes a characteristic of a heartbeat is whatever information can 

be gleaned from it and utilised to identify its specific kind. The characteristics can be gleaned 

from the time-domain and/or frequency-domain morphology of the ECG signal, or from the heart 

rhythm itself. Feature selection and feature extraction are two distinct procedures, even though 

the phrases are sometimes used interchangeably (Mastoi et al. 2019). Feature selection is the 

process of picking a collection of features that are the most representative to enhance the 
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classification stage, whereas feature extraction is the step characterised as the description of a 

heartbeat.  

The RR interval, which measures the time between heartbeats, is the most often reported 

characteristic in the medical literature. The RR interval measures how long it takes for one 

pulse's R peak to occur in relation to the preceding or the following heartbeat. Apart from 

pacemaker patients, changes in the morphology of the curve, which are often triggered by 

arrhythmias, relate to changes in the breadth of the RR interval. Some writers have built their 

strategies on exclusively utilising the RR interval characteristics because of their high 

discriminatory power. Common implementations of this feature exist for noise suppression, such 

as averaging a patient's RR interval across a given time. The classification results can be greatly 

enhanced by using a normalised RR interval, as demonstrated by Ortin et al. (2019). Under the 

inter-patient paradigm, the results of that work are equivalent to those of the state-of-the-art 

approaches because only normalised RR intervals are employed. Normalized RR-intervals' 

efficacy was verified by feature selection methods, as demonstrated by Qurraie et al. (2017). In 

addition to the distances between the fiducial points of a pulse, various properties may be derived 

from the heartbeat intervals and can be found in the literature. The most used is the QRS interval, 

which is the time it takes for the QRS complex to complete. The QRS interval can be a useful 

diagnostic tool since it varies in response to different kinds of arrhythmias.  

Researchers say that wavelet transformations are the best methodology for extracting 

characteristics from the ECG signal, even though many other methods have been investigated by 

Raj et al. (2017). In contrast to the conventional Fourier transform [98], which only provides 

analysis in the frequency domain, the wavelet transforms permit information extraction from 

both the frequency and temporal domains. Discrete wavelets transform (DWT) is the most often 

used type of wavelet transform for ECG signal categorization because of its simplicity of 

implementation.  

Since continuous wavelet transform (CWT) avoids the coarse representation and instability of 

DWT, it has been utilised to extract features from ECG data [99]. While CWT can be useful as 

an analyzer, it is not often employed since its implementation and inverse are not included in 

common toolboxes (like the MATLAB wavelet Toolbox). Even while Ye et al. (2016) 

computational cost as a drawback for adopting CWT, it has been used effectively on even basic 
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medical equipment for at least a decade already. Finally, Li et al. (2016) argue that DWT and 

CWT should be adopted since they are superior to current approaches, in which just one of the 

transforms is used by the authors.  

Kim et al. (2016) state that the final performance of the classification model is highly dependent 

on the mother wavelet function selected for feature extraction. It is necessary to carefully 

consider this option so that no vital information from the ECG signal is lost. Parameters that 

affect arrhythmia classification outcomes include filter order and amount of decomposition in 

addition to the mother wavelet function selected. According to the findings of Garcia et al. 

(2017) using the Particle Swarm Optimization (PSO) method to fine-tune these values yields 

better outcomes.  

To create a real-time, patient-tailored ECG beat classifier, this research makes use of the echo 

state network (ESN), a type of reservoir computing (RC) model. In reservoir computing, a 

random excitable medium is used to transform a signal from a lower-dimensional (linear 

transform) space into a higher-dimensional (nonlinear transform) space. RC has been proposed 

as a computational paradigm for "unconventional" physical or computational media, meaning 

those that are not based on neural network models or digital computing circuits, by researchers in 

computing theory and microchip technologies due to the broad applicability of the notion. 

Designing implantable or wearable biosensors, processors, and controllers based on this 

computational method is encouraging since functional reservoirs have been successfully 

constructed in electrical circuits, optical media, or chemical (molecule) substrates. As will be 

shown below, when trained and evaluated on ECG recordings chosen from the MIT-BIH 

arrhythmia database, the model delivers a predictive solution to the electrocardiogram (ECG) 

beat categorization problem that beats the existing state-of-the-art. This reservoir model is 

demonstrated to be compatible with the Dynap-se process- or, neuromorphic hardware used to 

create analogue spiking neural networks, thanks to the application of the concept of "reservoir 

transfer learning."  

Methods of ECG Classification  

Automatic ECG beat classification has made considerable use of decision-tree techniques based 

on numerous characteristics retrieved from each heartbeat. A typical heart rate segmentation, 

feature extraction, and classification module make up the backbone of such a system. Most 
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cardiac beats are first segmented using non-overlapping sliding windows of varying sizes and 

shapes (Farina et al. 2015). Then, a classifier is trained using a variety of temporal features (such 

as the width and height of the QRS complex, the RR interval, and the area of the QRS complex), 

frequency domain descriptors (typically extracted using power spectral density (PSD) or discrete 

Cosine transform), time-frequency domain representatives (obtained using discrete Wavelet 

transform), and features extracted from the phase-space reconstruction of ECG recordings. The 

variability in ECG beat shape and temporal characteristics among patients, patient groups, and 

the same patient throughout activity stages presents considerable difficulty in analysing these 

properties. As a result, it appears that there is tremendous potential value in exploring patient 

adaptability.  

The classification section has used a variety of methods for distinguishing between heartbeats, 

including ANNs, SOMs, SVMs, linear discriminators, conditional random fields, and neuro-

fuzzy networks [3, 25, 26]. As far as I'm aware, this is the first study to suggest using a "mixture-

of-experts" (MOE) technique to show that it's possible to make an ECG beat categorization 

algorithm that can be customised for each individual patient. Twenty ECG signals were 

randomly picked from the MIT-BIH arrhythmia database, and the overall performance 

parameters were reported as 94.0 per cent accuracy, 82.6 percent sensitivity, and 97.1 percent 

specificity. After that, a patient-specific heartbeat classification scheme was proposed using a 

fuzzy-hybrid neural network consisting of a fuzzy c-means classifier and an MLP neural network 

trained to distinguish normal from abnormal cardiac beats based on features such as the variance 

of the wavelet transforms, the third-order cumulant, and the autoregressive (AR) model 

parameters. Accuracy of 93.5 percent, sensitivity of 99.6 percent, and specificity of 95.3 percent 

were achieved on 7 ECG recordings from the MIT-BIH arrhythmia database. A small sample of 

each ECG signal was used for training and testing the classifier (i.e., 200 heartbeats). A three-

class classification technique was established to identify normal beats, premature ventricular 

contractions (PVC) beats, and other beats in two-lead ECG recordings using cross-spectral 

density information retrieved in the frequency domain (Acharya et al. 2018). It was demonstrated 

that using the method with 40 files from the MIT-BIH arrhythmia database led to a classification 

accuracy of 95.51–96.12%. It has been proposed that treating ECG waveforms as data-packet 

streams and employing packet-processing techniques might help define ECG patterns that are 

unique to a patient. The technique uses wavelet analysis with adaptive thresholding to perform 
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preprocessing and feature extraction on an electrocardiogram (ECG) based on the accurate 

localisation of fiducial ECG points. The MIT-BIH arrhythmia database includes 47 files, and the 

overall classification accuracy was reported to be 97.42% (Garcia et al. 2017). 

Computing in a Reservoir  

Reservoir computing is a framework for designing, training, and analysing recurrent neural 

networks (RNNs) for processing time-dependent information, and it was inspired by the brain's 

capacity to do so. You may think of a reservoir computer as having three primary components. 

An enormous, randomly connected recurrent neural network (the "reservoir") receives the input 

signal at the input layer (Wu et al. 2016). This dynamical system's internal variables perform a 

non-linear mapping of the input signal into a signal space with more dimensions (i.e., reservoir 

states). The time-varying output of the reservoir is calculated as a linear combination of the 

reservoir states in the output layer. Any number of all-to-all (random) feedback links between the 

network's output and reservoir might be incorporated into the design, depending on the specifics 

of the task at hand (Teijeiro et al. 2018). The RC approach recommends just adjusting the output 

weights to reduce the mean square error between the goal and the output signal, in contrast to 

more conventional (and "deep") RNN training techniques. Input weights and reservoir 

connection weights can be chosen arbitrarily within certain bounds to achieve optimal 

performance. Since only the output connections require training, and the optimization of the 

output layer requires just a linear regression, training techniques are computationally fast and 

easy to understand (Llamedo et al. 2012). Since the input signal is nonlinearly expanded into a 

high-dimensional (reservoir) signal space, reservoir computers can efficiently complete a wide 

variety of complicated tasks on time-dependent signals with little effort on the part of the user in 

terms of training time (Mastoi et al. 2019). Reports of successful applications of research-based 

computing range from nonlinear channel equalisation and time series prediction to voice 

recognition and robot control. 
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Chapter 3: Methodology 
In the detection of CVDs and arrhythmias patient specific ECG analysis is highly essential. The 

methodology followed in the project is quantitative in nature as the techniques in machine 

learning algorithms are followed in conducting the research. The method will make use of ESN 

classifiers as they are based on RNN where the output layer weights are trained. This approach is 

useful to handle real-time data in the RC framework. The methods of signal processing are used 

in Matlab software in the project. The basic steps followed in the project method involve: 

Pre-processing of ECG signal 

As mentioned earlier patients' ECG forms the input for the system. ECG signals contain noise 

signals and contaminated signals, and they must be initially de-noised. In the approach, the 

variegated ECG signals are the initial input for pre-processing. Noise and unwanted signals come 

in ECG due to patient movement or vibration while the physiological signals are recorded. 

Another unwanted signal is power line interference that occurs due to the results due to 

respiration as it can show variations in the actual information. The noise and unwanted signals 

are removed in the pre-processed stage to eliminate problems in extracting hidden features of 

information in the raw ECG signal (Robinson et al., 2021).  This pre-processing is needed to 

ensure accurate and relevant ECG signals to extract features and classify beats. 

The removal of noisy physiological signals for high-performance data will involve the usage of a 

median filter to remove unwanted signals in the ECG signal. In this method, the median value is 

calculated by the use of two median filters of varying lengths using Matlab. The medfilt1 

function in Matlab is implemented to filter the ECG signal in 1 dimension. The medfilt1 function 

will remove the unwanted distortions or outliers in the ECG signal. A set of differential 

equations are used to derive the values of the slope. Subsequently, the values obtained in output 

from the ECG waveforms are squared to determine R- peaks in the signal without noise. The 

values of the related R wave, R-location and R-wave amplitude are stored as a matrix form Rnxm.    

Heart Beat Segmentation 

The ECG recordings are segmented into heartbeats by extracting the signal surrounding each 

heartbeat in the annotation. In this stage of the approach, the heartbeat is segmented after 

detecting the peaks. The detected peaks are further determined as an Rnxm matrix to select the 

location of R as a reference point. Here, R- the peak position is determined for the sample data 

along with the intervals in seconds to form the single heartbeat segment. The segmented 
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heartbeat usually will have samples gathered starting from 0.2 seconds to 0.32 seconds next to 

the fiducial point. The fiducial point provides the heartbeat position in the signal (Mejía-Mejía, 

May and Kyriacou, 2022). The heartbeats are segmented and normalized to mean as 0 and 

standard deviation as 1. The area segmented in the QRS-complex to indicate start-end points 

respectively that are shown as Q and S waves respectively, while the R wave indicates the area 

under the peak. The combined waves namely Q, R and S waves provide the ventricular de-

polarization of a heartbeat. Ventricular depolarization indicates the electrical impulse conduction 

by the ventricles. The output segments are further subject to feature extraction. 

Extraction of Features 

The ECG wave features extracted based on normal heartbeat and abnormal heartbeat. A normal 

heartbeat is determined by the regular RR intervals, that has P- wave and narrow QRS complex. 

Contrarily abnormal heartbeat will have RR-interval in narrow form and P-wave will be absent 

with a wider QRS complex. The time duration between two RR intervals will represent the 

duration between two successive heartbeats. The RR-interval features are, 

 The previous RR interval refers to the difference in time between the previous and 

current heartbeat. 

 Subsequent RR interval provides time duration between current and subsequent heart 

beats respectively. 

 Average RR is the average of n number of heartbeats from the recordings in ECG. 

Average is the calculation made from previous RR intervals. 

 Standard Deviation of successive differences (SDSD) refers to the difference between 

adjacent RR intervals. This feature provides the physiological signals related to the 

arrhythmia condition.  

The discriminant features will use the area in each heartbeat waveform. The mean('Beat') 

represents the averages of all values of the heartbeat that is segmented. The mean('Beat') 

indicates the average of absolute values obtained from the derivative in the segmented heartbeat. 

Here, the derivative is determined using the formula for central difference as the abnormal 

heartbeat will provide a broad area due to their wider QRS complex. Further, the abnormal 

morphology beats exhibit a rise and fall slower compared to the morphology of normal heartbeat 

signals. To evaluate the variability of heartbeats to distinguish between normal and abnormal 
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beats, a patient-adaptable approach is followed. This approach involves a reference beat that is 

based on the estimation of normal morphology and supra-ventricular origin heartbeat of each 

patient.   

The above quantities provide the measure of variability in heart rate as RR- intervals in 

milliseconds. Subsequently, the features extracted will be processed using the ESN classification 

algorithm. 

Classification using ESN 

The ESN is the classification algorithm that is the main component of the RC paradigm. The idea 

is the input of the random projection in a reservoir with high dimensions. Another advantage of 

ESN is that it will eliminate the over-fitting problem. The advantage here is that the internal 

connections found in input and neurons do not need training. This leads to free parameters in the 

system having constraints in output weights. In the case of any standard ESN, RC will involve 

RNN that randomly sets the weights in input, biases and connection weights in neurons found 

internally. ESNs will perform with topology having deterministic connections and as well as 

random input weights. The advantage here is that they can be implemented easily in hardware. 

Here, a main type of ESN architecture is selected to develop a model with efficiency for 

implementation in processing the real-time ECG signal. A cyclic-based ESN architecture in the 

form of a ring is chosen as it provides random links between neurons. The basic representation of 

the cyclic ESN architecture is shown in figure 1. The reservoir network input is the ECG data. 
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Figure 1: A standard cyclic ESN architecture (Mastoi, Wah and Raj, 2019) 

The cyclic ESN model for ventricular heartbeat classification is used for its advantages in the 

capability of high-speed processing with low power consumption. The activation vector for ESN 

(Mastoi, Wah and Raj, 2019) is provided in equation (1). 

𝑠(𝑛) = 𝑔(𝓋𝑊𝑖𝑛𝐹(𝑛) + 𝛼𝑊𝑠(𝑛 − 1)     (1) 

Here, 𝑠(𝑛) ∈ ℝ𝑁𝑑  represents the state or the activation vector. 

Nx indicates the neurons found in connection weights, and 𝑊𝑖𝑛 ∈ ℝ𝑁𝑥𝑋𝑁𝑑  is a random matrix. Nd 

indicates the input vector dimension. The parameters 𝓋 𝑎𝑛𝑑 𝛼 represent the connection scaling 

inputs and F(n) indicates the features of the vector as input of heartbeat with dimensionality 

value. In ESN the activation function is referred to as the sigmoid function and made 0 by 

shifting it symmetrically. Nx is the linear combination of the activation function s(n) and ESN 

model output provided by equation (2).  

𝑦(𝑛) = 𝑔(𝑊𝑜𝑢𝑡𝑠(𝑛))                        (2) 

Here, 𝑊𝑜𝑢𝑡 ∈ ℝ𝑁𝑜𝑢𝑡𝑋𝑁𝑥  is the matrix with weights to show links found in ESN neutron and 

different output nodes. This method is further extended to determine the weight of bias and 

feedback between the response function. RNN in the RC framework will remember the input 

thus enabling it to predict accurately over time and hence reliable when working with log time 
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series data. Since ECG signals vary extensively with time it is easy to classify between normal 

and abnormal heartbeat using ESN. 

 

 

 

 

 

 

 

The overall approach is represented by figure 2 to show the processes. 
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Figure 2: The steps involved in the project method 

The proposed method is based on ESN. This will classify the heartbeat based on pre-processed 

ECG signals and will be based on morphology namely normal and supra-ventricular heartbeats. 

This classification is based on two stages. The first stage will obtain an ECG signal from the 

patient and filter followed by detecting heartbeat, segmentation and feature extraction. Here, the 

time difference between heartbeats in the model is included along with morphological 

characteristics. In the second stage the classification is done between supra-ventricular and 

normal heart beat is classified using ESN cyclic topology to achieve classification between 

abnormal and normal heart conditions.  

 

Databases used in the project 

The proposed method of heartbeat classification is evaluated using standard arrhythmia ECG 

databases namely MIT-BIH arrhythmia and AHA. These databases provide the standard 

parameters or attributes for evaluating arrhythmia classifiers. The database is considered because 

they contain annotations to indicate the heartbeat classes and is verified by specialists and 

independent researchers. The databases follow the mandate standards as in the Association for 

Advancement of Medical Instrumentation (AAMI) for evaluating ECG classifiers. The 

annotation labels consist of mainly five types namely normal heartbeat, supra-ventricular ectopic 

beats (SVEB), ventricular ectopic beats (VEB), fusion (F) beats and unclassified beats. Due to 

these reasons, the databases are considered in the project.  

The American Heart Association (AHA) Ventricular Arrhythmia ECG database is used in the 

project as these datasets consist of ECG for testing the ESN classifier to detect heartbeats for 

arrhythmia condition for its effectiveness. The ECG signal recordings are classified as a 

ventricular-ectopic beat (VEB), supra-ventricular ectopic beat (SVEB), fusion beat (F), 

unclassified and paced beat (Q) and non-ectopic beat (N).  

Training and Test Data  

Both the MIT-BIH and AHA databases are split into separate datasets for training and testing. 

Here, DS1 is the training and DS2 is the testing dataset respectively used separately in both 

databases. The training and testing data are selected to maintain a balance between the type of 

heartbeats and the number of ECG waveforms in each dataset. The classifier is optimized using 
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DS1 and evaluated using the DS2 dataset. Further, the heartbeat of the same patients in the train 

and test datasets can have bias and hence the output is not replicated. For the MIT-BIH datasets, 

the DS1 dataset used were 22 and 44 ECG records and 22 records for DS2. In the AHA database, 

DS1 used 79 ECG records labelled as series=0, and 75 records for DS2 labelled as series=1.  

Performance Metrics 

The ESN classifier performance evaluation is based on the MIT-BIH database and AHA 

database with unit lead as a basis. The standard statistical measures are used namely Sensitivity 

(Se), specificity (Sp), positive predictive value (PPV), Accuracy (Acc) and F1 score. 

The formulas for metrics are, 

𝑆𝑒 =
𝑇𝑃

(𝑇𝑃 + 𝐹𝑁)
   

𝑆𝑝 =
𝑇𝑁

(𝑇𝑁 + 𝐹𝑃)
  

𝑃𝑃𝑉 =
𝑇𝑃

(𝑇𝑃 + 𝐹𝑃)
   

𝐴𝑐𝑐 =
(𝑇𝑃 + 𝑇𝑁)

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁)
  

 

In the above equations, TP is True Positive, TN is True Negative, FN is false negative and FP is 

False Positive respectively. The F1 score calculation is based on the harmonic mean of Se and 

PPV in the formula,  

𝐹1 𝑆𝑐𝑜𝑟𝑒 =
2(𝑆𝑒 ∙ 𝑃𝑃𝑉)

(𝑆𝑒 + 𝑃𝑃𝑉)
  

The F1 score will select the optimum parameters for the ESN classifier in the training phase.  

The ESN classifier will classify the processed ECG signals based on two classes of morphology 

namely SVEB+ (Supra-ventricular ectopic beats), and Ventricular ectopic beats (VEB+). The 

SVEB+ class is further classified as N or normal and supra ventricular ectopic as S or SVEB 

heartbeat. The SVEB heartbeats show normal morphology with supra-ventricular origin. The 
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VEB+ presents ventricular origin with abnormal morphology. The VEB+ class is made up of 

ventricular ectopic beats VE and fusion beats (F). 

The beat class distribution and scores from evaluation along with metrics are explained in the 

results and findings are discussed further. 

 

 

 

Chapter 4: Findings and Results  
The heartbeat classification uses the MIT-BIH arrhythmia database and the AHA database. MIT 

BIH is used normally by researchers in evaluating arrhythmia classifiers. MIT-BIH database 

consists of ECG records for 48 hours and sampled at 360 Hz with two leads. One lead consists of 

a waveform obtained from electrodes attached to the chest and limb, and the second lead is a 

modified lead of V1. Contrarily, the AHA database has ECG recordings containing 30-minute 

information on the beat class. The ECG records in AHA documentation mention two leads 

namely A and B and are sampled at 250 Hz. As indicated earlier, the ECG classifiers are 

evaluated using the standards of the Association for Advancement of Medical Instrumentation 

(AAMI) and heartbeat annotation labels indicate N, S, V, F and Q heartbeats. Here, Q beats are 

unclassified beats and hence not representative. With the standards of AAMI the ECG data that 

has paced beats are removed, also importantly the AHA data will not be able to distinguish 

between N and S beats.  

The extraction of the ECG signal involves median filters applied in pre-processing. The lowpass 

filter with a cutoff frequency at k = 35 Hz is used for noise removal and outlier removal as in 

figure 3. 
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Figure 3: Representation of noisy ECG signal 

After filter application, the noisy signals and outliers are removed, as represented in figure 4. 

 

Figure 4: ECG Signal representation after noise removal  

Subsequently, the peaks are detected by first obtaining high slope values using the differentiation 

equation. Next, the R-peaks are obtained by squaring the output signals and lastly the sum of all 

values was made on the slope of the R-wave. The values of R-wave, R location and amplitude 

are stored on the Rnxm matrix. The detected peaks are shown in figure 5. 
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Figure 5: R- peaks detected from ECG signal are represented  

Further, the heartbeat is segmented after detecting the peaks. The Rnxm matrix is used to choose 

the R location as the point of reference. After determining the position of the R-peak, the 

waveform is sampled for a single heartbeat. The segmented area is shown in figure 6. 

 

Figure 6: The QRS area is shown in pink colour 
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To obtain these peaks 200 samples were used from the database and to obtain the R peak, the 

division of points included 75 and 125 on both left and right sides respectively of R-peak. The 

samples were gathered in time from 0.2 seconds to 0.32 seconds. Using this approach the 

temporal location of waves namely Q, S, P and T waveforms are extracted from the signal.  

Based on the training and testing datasets, the beat class distribution is provided in table 2.  

 

Table 2: Beat class distribution for both the databases  

The ECG records are processed in the classifier as in the following steps,  

1. The ECG signals are re-sampled. The processing is done at the rate of 250 Hz, the 

common sampling rate. In this step, the AHA database at a frequency of 250 Hz 

retains the sampling rate in its original form and the MIT-BIH database is re-sampled 

at a frequency range - of 250 Hz from 360 Hz.  

2. The ECG data is filtered to bandwidth 𝜈 (𝐻𝑧) ∈ [0.5, 0.35] to remove noise and 

unwanted signals. In this step, a high-pass filter is used as a standard procedure.  

3. The heartbeat is detected by determining the position. The databases provide 

annotated positions and hence those positions are used to determine the heartbeat. In 

the case of the MIT-BIH database, the large minimum or maximum value in QRS 

complex function denotes the annotated position, this is used.  

4. The RR interval is determined. This interval is the time duration between two 

successive heartbeats. Suppose if RR interval denotes heartbeat i, the time difference 

(i – 1) represents the difference in time duration between i and the previous heartbeat 

(i - 1). 
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5. The heartbeat is segmented from the segmented position of data in each of the 

databases. The segment size is 240 ms in the project and the segment is around the 

annotated position.  

6. Lastly, each heartbeat is normalized in the range [-1, 1]. In this manner, the signal is 

separate and becomes independent from the original ECG signal amplitude. 

In the above processing of ECG recordings, each heartbeat must be represented as a set of 

features. The main reason for feature selection is to ignore complicated features that can lead to 

high computing costs. Hence the simple method is considered for feature extraction.  

Here, the raw waveform for each heartbeat is used and the position of the heartbeat is 

represented. The original raw data as a waveform in each heartbeat indicates equally the number 

of samples having both sides as the reference point in annotating heartbeats. Further data from 

RR intervals are added to heartbeat features to understand characteristics related to the temporal 

nature of each heartbeat signal. The RR intervals are the features usually used in the arrhythmic 

classification of heartbeats. The heartbeat features for ith heartbeat are,  

(i) The original data of 60 heartbeat waveforms is centred around the annotated position for 

the heartbeat  

(ii) The current RR- interval logarithm value is represented as ln(RR(i)) 

(iii)The next RR-interval  logarithm function is represented as ln(RR(i+1)) 

(iv) The average measure of 250 RR- intervals are represented as ln(mean). The mean is the 

average of n neurons with RR intervals, in this case, n < 250. 

The process stages and feature extraction are done by representing each heartbeat as one vector 

with d-dimensions. Three features are found in the vector, namely RR- intervals, morphological 

features, and samples of ECG waveform. These features have a relation to RR- intervals. Here 

the vector with d-dimensional, d = 63 provides input for the classification algorithm. 

The ESN classifier algorithm 

As mentioned earlier, the ring topology is used in the ESN classifier and implemented in RC. RC 

is a paradigm in ML is a successful RNN approach that makes use of the layers namely input, 

reservoir and output layers. The ECG input stage is given to the RC network to result in a change 

of dimensions from d x Hb to N x Hb. Here, the number of input features is indicated as d, Hb 
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represents the heartbeats and the neurons are denoted as N. The random input matrix represented 

as 𝑊𝑁×𝑑
𝑖𝑛  is generated in uniform distribution that is an element of [-1, 1]. Therefore, the data 

features from ECG original vector, 𝑢𝑑×𝐻𝑏  changed as in equation 𝑋𝑁×𝐻𝑏 = (𝑊𝑁×𝑑
𝑖𝑛  × 𝑢𝑑×𝐻𝑏). 

The input data sent to the reservoir will proceed sequentially where further computation is made 

iteratively in the reservoir. Here, r is the matrix response in the reservoir for an nth heartbeat for 

classifier standard ESN is provided by expression  𝒓(𝑛) = 𝐹(𝛾𝑿(𝑛) + 𝜂𝑾𝒓(𝑛 − 1)). 

In this expression, W represents a square matrix with a random connection and has N x N 

dimensions. The activation function of ESN is represented as F. The quantities γ and η represent 

the scaling parameters for input and connection respectively.  

In ESN, the random square matrix W is generated using the uniform distribution in the range [-1, 

1]. This will define weights that provide connections between neurons internally. In the case of a 

non-linear function, the exponent and bias in the classical sigmoid function are used because 

sigmoid functions in reservoir computing provide outputs optimally. Using simple linear 

regression, the reservoir response and output connections are only optimized. The input r(n) by 

the ESN will calculate the output given by the quantity, 𝑦̂(𝑛) as 𝑦̂(𝑛) = 𝑾𝑜𝑢𝑡𝒓(𝑛). In this 

expression, 𝑾𝑙×𝑁
𝑜𝑢𝑡  is the quantity for output weights in the ESN. Here, l represents output nodes. 

The linear regression model is used in calculating the output nodes. Here, the error is minimized 

between the outputs of training data and the associated values of the target class. The output is 

continuous and represented as expression 𝑦̂(𝑛) is converted to binary through a decision 

threshold. Usually, with ESN classifiers, W the connection matrix is referred to as a sparse 

random matrix. The ESN classifier with ring topologies performs better with the standard 

random connection matrix. In the study, the ring topology of ESN is used as it provides fixed 

connections at random in the input function 𝑾𝑖𝑛 and with fixed weights having deterministic and 

in between internal neurons in the reservoir.  

Also, the topology selected can easily explore system parameters contrarily, ESN classifiers with 

random topologies need more computing power. ESN ring topology is easy to implement and 

does not need high computing power. 
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Chapter 5: Analysis and Discussion 
The ECG datasets were processed using an ESN classifier based on RNN that has input and 

connection weights at random between the neurons. RC response will be easy to classify because 

the input is mapped non-linearly and has high dimensions, compared to the original input 

through a simple linear regression technique. The classifier is evaluated using optimal 

parameters. The final evaluation is done using the testing dataset DS2 which is not equal to the 

training dataset (DS1). The classifier performance is obtained with dataset DS2. In the training 

phase, the parameters of individual ESN are optimized. The original ECG signal is normalized in 

[-1, 1]. Hence there is a similarity between the RR- intervals in the datasets. The optimum 

parameters for ESN are η = 0.2, γ = 0.1 and N = 1000 as they are found to be associated with 

both MIT-BIH and AHA datasets. The VEB performance measures were obtained from the 

dataset as in table 3. 

 

Table 3: The performance measures of VEB heartbeat using 30 ESN 

The performance measures in the table obtained using two leads for both databases indicate the 

accuracy is above 98%. This implies lead II of the MIT-BIH dataset provides the best results. 

Here, the ensembles will minimize overall errors in a single ESN. The ensemble significantly 

reduces false negatives to result in higher PPV. The capability for generalization for both SVEB 

and VEB classifiers provided promising results. The generalization capability was achieved by 

training the AHA database for both leads A and B. This AHA dataset provided better 

generalization potential compared with MIT-BIH datasets. The ensemble performance and F1 

score are shown in the graph, figure 7. 
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Figure 7: ESN classifier performance obtained with η = 0.2, γ = 0.1 and N = 1000 

To compare the performance of the ESN classifier with another standard classifier, the 

classification model using CNN was explored. In this model, the datasets used were the same, 

MIT-BIH and AHA. The method will automatically classify VEB beats using wavelet transform 

of ECG and CNN. The wavelets used in this method are Morlet Wavelet, Paul wavelet and 

Gaussian Derivative. These wavelets were transformed as divisions of single-channel ECG 

waveform to the 2D image of a certain frequency. The images of time frequency were further fed 

into the CNN to optimize the convolution filters and are classified. This method made use of a 

tenfold evaluation using the arrhythmia database MIT-BIH. The AHA datasets were used 

separately to evaluate the trained network.  

The ECG recordings from the MIT-BIH database were allocated as ten data subsets randomly. 

The approach of random grouping was made by gathering the numbers instead of the total 

heartbeats, where data of one record will not be present in both the training and testing datasets. 

The CNN model was provided with a 5/6 heartbeats waveform to directly train the model and 1/6 

heartbeats were used to validate the learning process and optimise model parameters and prevent 

overfitting. The trained model was tested and the process was made using 10 iterations and 

results for each fold were combined.  
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As indicated earlier, the performance metrics namely Acc, Se, Sp, PPV and F1 scores were 

determined to evaluate the algorithm performance. The statistical measures were obtained and 

for each test fold in the datasets, the beats were identified whether they are correct or incorrect 

along with true positives, true negatives, false positives and false negatives.  

The gross test results of the model were obtained. The F1 score was high as shown in figure 8. 

 

Figure 8: The gross test performance showing different metrics  

The training results indicate the Paul wavelet provided the best test performance with accuracy at 

around 97.9%, Sp is 99.1%, and PPV at 87.2%, sensitivity at 82.6%.  

With the AHA database, the algorithm could obtain 97.6% accuracy, 82.2% sensitivity, 98.8% 

specificity and 87.2% PPV. The results were averaged to obtain the evaluation measures, that 

indicate the model has the potential for good performance in classifying ECG waveforms. 

Discussions 

The method using the ESN classifier provides good results for VEB heartbeat with MIT-BIH and 

AHA databases in detecting ventricular arrhythmia. The classifier approach with ESN is found to 

be ideal in processing ECG signals obtained in the long term and can be used for large databases 

as minimum computational requirements are needed for feature extraction and the algorithm. 

Further ESN presents advantages over the classical methods that make use of SVM, NN, CNN or 
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decision trees and so on. This was checked with the computational performance and performance 

metrics with the other model using the same databases. In the compared work a learning network 

using CNN was used to distinguish VEBs from ECG waveforms using the same types of input. 

This method is not computationally intensive and tends to show promising results during testing 

and validation.  

The metrics value obtained from both methods is shown in Table 4. 

Metrics  

ESN Classifier CNN classifier model 

AHA MIT-BIH AHA MIT-BIH 

Accuracy 

(ACC)  

98.15 96.1 97.5 97.3 

Sensitivity 

(Se)  

86.9 78.4 82.5 82.8 

Positive 

Predicted 

Value (PPV)  

93.4 79.9 82.3 87.2 

 

Table 4: Performance metrics values obtained from both the methods 

The results indicate the accuracy values obtained from ESN are slightly higher in terms of the 

value obtained for AHA. In the case of the MIT-BIH database, the accuracy value is slightly 

higher compared to the accuracy value obtained in the ESN classifier. The sensitivity values 

obtained from the ESN classifier are higher compared to the values of sensitivity determined 

using the CNN classifier model. This indicates the RC paradigm in the ESN network provides 

better performance in processing ECG waveforms with variations. The PPV values provide 

higher measures for the Aha database using the ESN classifier, whereas with MIT-BIH datasets 

the values for PPV are lesser compared to the PPV value obtained from the MIT-BIH dataset 

using the CNN model. 
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Based on the comparative evaluation and determination of metrics the ESN classifier provides 

better results in accuracy, PPV and sensitivity compared to other models based on the CNN 

algorithm. Therefore, it is noted that the ESN classifier based on the reservoir computing model 

shows good potential in classifying arrhythmia conditions from ECG waveforms.  

Conclusion 
The project presents the processing of ECG datasets using an ENN network based on the 

reservoir computing paradigm. The project aims to overcome the challenges in ECG 

classification due to the increase in cardiovascular diseases and related conditions.  Over the 

years several studies highlight the use of ML models and algorithms to automatically classify 

heartbeat variations using ECG datasets. The project focuses on the CVD condition named 

arrhythmia to classify ECG heartbeats using standard ECG databases from MIT-BIH and AHA. 

The ESN classifier based on the reservoir computing paradigm is considered in this study for its 

accuracy and low hardware requirements. The study is made by first understanding existing 

research related to the topic of arrhythmia classification using standard classifiers based on ML 

models. A comprehensive literature review is made to understand the clinical applications of 

ECG waveform data. The ECG waveform data must first be pre-processed to remove noisy 

signals from the ECG waves. This is followed by processes involving heartbeat segmentation, 

extracting of the features and finally classification of heartbeats. Lastly, the ESN classifier is fed 

with clean ECG datasets to determine between heartbeats that are normal and abnormal. 

The methodology section provides the details of each step followed in the project. As mentioned 

in the report, the datasets from MIT-BIH and AHA databases were processed using the ESN 

classifier to determine heartbeat variability in each heartbeat waveform. The reprocessing steps 

include the use of the filter to remove noise signals and outliers before heartbeat segmentation. In 

the project, the techniques of signal processing are employed and used to eliminate unwanted 

signals in the ECG signal before it is provided as input to the classifier. This is followed by 

heartbeat segmentation, the heartbeat segmentation is based on the QRS complex. In this phase, 

the R peaks and location is determined and the QRS area in the ECG signal is obtained. The 

feature extraction will extract RR intervals between two successive heartbeats. It is noted the 

heart-rate variability measure is the time interval between two successive heartbeats measured as 
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RR- interval in milliseconds. The extracted features are the pre-processed ECG waveform that is 

fed to the ESN classifier. 

In the project, the ring topology ESN architecture is used for its efficiency and less power 

consumption. The weight matrix is developed for the ESN model and the equations related to 

input and outputs are provided along with the parameters. The standard performance metrics 

namely accuracy, sensitivity, specificity, predictive power value, and F1 scores are determined to 

understand the output performance of the classifier. The temporal wave features are processed in 

the classifier for obtaining the performance metrics. The training and testing datasets are split 

from both databases to train and evaluate the model. The performance metrics were determined 

for the ESN classifier based on the RC paradigm. 

The findings and results provide the outputs obtained from the model to highlight the different 

processing steps. The beat class distribution is presented and the final processing steps for the 

classifier are highlighted in the report. The ESN algorithm is presented for its internal workings. 

The performance of the ESN classifier is obtained from processing the testing dataset from both 

databases. The results are provided in the table.  

To compare the ESN classifier, another standard model based on the CNN classifier was used to 

classify variations in heartbeats using the same databases. The CNN-based model made use of 

different signal processing methods and the same performance metric values were derived. A 

performance comparison is presented is made to understand the determined values. It is noted 

that the ESN classifier is more effective and accurate in classifying heartbeat variability 

compared with the standard CNN model. Hence the ESN classifier based on RC has the potential 

to classify different heartbeat conditions and support the diagnosis of CVD in patients. 

Future work:  

Future work on this topic will include processing more datasets in ESN to improve prediction 

accuracy using different datasets and also evaluate the system for its effectiveness using real-

time data. 
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