Title:

Comparison and Optimisation of CNN Accelerators’

Abstract

The area of computer vision has significantly evolved over the years especially in handling
problems in classifying and detecting images. The developments in fast-CNN, fully
convolution network (FCN), DL frameworks and algorithms have facilitated more advances in
the areas of detecting objects and semantic segmentation in dynamic and complex image data.
At the same time image classification and object detection problems face challenges related to
need for higher computing systems, speed and performance. To achieve higher accuracy, less
energy and performance accelerator boards and optimizer techniques are available that help in
reducing resource needs. The research presents a CNN model for image classification and
object detection using the coco 128 dataset. These datasets as inputs will train and test the CNN
model in different accelerator development boards. The results of Google Coral and Nvidia
Jetson Nano board were investigated. The performance evaluation involved the use of different
accelerator boards and values of performance benchmarked using training dataset and inference
datasets as input. The optimization techniques of Resnet-18 and YOLO are used to evaluate
the test datasets on accelerator boards. The image classification results yielded over 90%
accuracy. After increasing the hyper parameters the datasets were trained on ResNet-18
algorithm to obtain an accuracy of over 80%. It is noted that more training can help to achieve
higher accuracy. The research underlines the use of accelerator boards and optimizer algorithms
in overcoming problems in image classification and detection in terms of energy consumption,

efficiency and speed.

Acknowledgement

1

Table of Contents

Chapter 1: Introduction.........oooiiiiiii i, 6
1.1 Brief overview of CNN algorithm in object detection and recognition of new objects 6
1.2 Statement of research ProbIem.........c.eiiiiieiiiiiiieiiiiee e e 7
1.3 RESEAICH ODJECLIVES ...eeeuriiiiiieiiieesiieeetiee ettt ettt e sttt et e sttt e s e e sar e s e e sareeenareesanee 7
1.4 Significance Of TESEATCHccuueiiiiiiiiiiieiiee et 8
1.5 Structure of the diSSErtationeereveririeeriiieiiee ettt st e s e s e e naree e 8

Chapter 2: Background and Literature REVIEWcccovviiiiiiiii e, 10
2.1 BIIef 0N ML ...ttt ettt et e e e 10
2.2 BaSiCS OF CINN Lottt ettt et e st e e st e e bt esbe e e sabeeesaneesneees 11

2.2.1 L0T0] 1T PSPPSR 12

2.2.2 =T (0[] T PSSP 12

2.2.3 Dimensionality redUCTION.........coocuieiiiii e e 13
2.3 CNN fUNCLIONS teeeuettiiitieeeitieesitee ettt ettt ste e sttt e ettt e st e e sabeeebbee sttt e sabeeeabbeesabeeesabeeesaseesabeeas 15

2.3.1 Sigmoid or Logistic Activation FUNCHION.........cccuvviiiiieeeiiiiiiiieece e esriieeeee e e 15

2.3.2 Tanh (Hyperbolic tangent activation fUNCtion)ccccceevevereiriieresiiieeresrieeressnneeens 15

2.3.3 ReLU (Rectified Linear Unit) fUNCHIONuuveeviieiiiiiiiiiieiieeeeeiriiiieeeee e ssiiiieeeeeee e 16
2.4 Evaluation MELIICSceeiiiuriiiiiiiiiee ittt ettt ettt st st e s e e e 16
2.5 DALASELS ..veeeeiiiiiee ettt et e s e e et e s enr e e e e e arees 20

2.5.1 COQCO AALASLL .eeeeuerieeeeiiiiee ettt ettt e e e sttt e e s et e e s s e e s snbeeeesaneeeens 20

2.5.2 (0101010) 122 O PTPPPOTOTPRO 20

253 Large scale visual recognition challenge (LSVRC)coeiiiiiiiiniiiiiiieeieee e 22
2.6 CNN Models and Frameworkscccoviuiiiiiiiiiiiiiiiee et 22

2.6.1 FN (5 4\ [T PSP PO PP PP PPPPTOP 22

2.6.2 RESINEL ..t e 22

2.6.3 GOOGIEINEE ...ttt e st e e s et e e e sab e e e sabeeeesaabreee s 23

2.6.4 11 0] 031 1<)\ [T PSP PP PP PPPPTTOP 23

2.6.5 D (0) 5 TSP 23

2.6.6 FramewWOrKS.ceiiiiiiiiiiie e s e 24
2.7 CNN for Image Classification Problemscc.cccevieiiriiiiiiiiiiiii e, 25
2.8 Related work on CNN models and applicationsccc.cceervieeriereiierenieeneee e 27
2.9 Summary and Gaps iN LIErAtUIEcccueeeiiiieciee ettt ve e et e st e e sbe e eeareeens 29

Chapter 3: Methodology and Implementationceeeiiiiiiiiiiiiie e 31
3.1 Setting up Nvidia JetSOn NaNO........ceevceiiriieiiiere e e 31
3.2 Image classifiCation........cceeriuiieiiiiiiiecree et e 32

33 (O 10 [S o1 B T 1< Te7) s KO PP UT T PTPPR 34

T @311 101 V2:1 5 10) 4 PPV P PO SPPPPPRPOPI 37
3.4.1 RESNE-18 et e e e et e e e e e e as 37
342 D (0) 0 T2 TR 38
343 D) 0 T S 38

3.5 RESEATCH DIESIGN...ceiiuiiiiiiiiiiiieitee ettt s 39
3.5.1 Data ANALYSIS .eeevuveeeiiieeiiiieitie ettt ettt s eeneees 40
3.5.2 EPOCRS 1.ttt s re e e s s ateee e sanees 41
353 BatCh SIZE .envieeiiieiieeee e e s 41
3.54 Learning RAte......ccovuveiiiiiiiiiiiiiee ettt st e st e s st e e e s sabe e e s sanree e s sanees 42
3.55 CINN MOEIS ettt ettt ettt st e s e et e st e sttt e s e s sareeeneeas 42
3.5.6 Hardware and SpecifiCationsS...........oicvereeriiieesiiiieresiiieeessieeesssreeeessnreeesseneeessnnnees 44

Chapter 4: Results and DiSCUSSIONSccceiiiiiiiiiiiece e 45
Chapter 5: CONCIUSION......ccoi i 49
[(=T ¢ Tol TP PP PP OPPRPPPPPPR 50

List of Figures

Figure 1: Basic CNN architecture (Mishra, 2020)cccoeeviiiiiiiiiiieeenniiiiiieeeee e ssiiireeeeeesssssevsneees 14
Figure 2: Basic Confusion matrix (Ahmed, 2023)veviiiiiieeiiiiieee e sieee s sieee e esvre e e s sereee e enneees 18
Figure 3: Illustration for intersection over union (Simic, 2024)cccceeeriiieeeriiiieee e 20
Figure 4: NVIDIA Jetson Nano representation with devices and interfaces...........cccceveveeeeriiereennnee 31
Figure 5: Image of great white shark used in teStING.........cveverriiiiiiiiiiiie e 33
Figure 6: Image (hammer head shark) used for testingcocceeeeiiieiiiiiiii i 33
Figure 7: Testing for image classification, the bird in the picture..........ccccoeeeiiiiiiiiiiii e 34
Figure 8: Test for object detection model, detected pedestrian...........cceeeeeriieiiiiiiiieiiiieee e, 36
Figure 9: object detection, detecting more than one pedestrianccceeervvereriiiieeeeiiieee e 36
Figure 10: Image segmentation using Mask R-CNN architecture (Zhou et al., 2021).........ccceceeennnee. 43
Figure 11: Object detection using YOLO. For example, the detection of road signals (Flores-Calero et
Aoy 2024) 1t b e et n e 45
Figure 12: Training results using ReSnet-18coocuiiiiiiiiiiiiiiiie e 47

1 Chapter 1: Introduction

Image classification and object detection has become a significant area for research especially
in the area of artificial intelligence (AI). Recent developments in deep learning (DL)
frameworks a subset of machine learning (ML) and convolutional neural networks (CNN) have
improved performance levels in applications. Improved performance in applications include
detecting objects, image-segmentation, human-pose estimation, image detection from video
streams, static image classification, and so on. The technology of image lassification has
significantly improved and has become essential in the development of computer vision, that
has the main features of data pre-processing, feature extraction, object-representation, and in
design of classifier. Also, image classification research focuses on these computer vision
features. Recent trends also focus on overcoming traditional image feature that leads to poor
generalization, portability and ability. Hence to overcome limitations, developing ability in the
computer to process images that are similar to biological vision is needed. The developments
in artificial neural network (ANN) algorithm supported by mathematical models provided the
direction for analysis of image datasets with added learning functions and accelerator elements
and optimizer algorithms led to development of new approaches and techniques in image

classification and object detection applications.

1.1 Brief overview of CNN algorithm in object detection and recognition of new
objects

As DL is a subset of ML which is a subset of Al. DL algorithmic and techniques are involved

in different applications under image recognition, hand writing recognition, voice recognition,

and so on. CNN is a subset of DLs and used widely in image recognition and object detection

applications, particularly images from video streams. CNN algorithm can be trained for

recognizing objects or images and can be implemented in embedded devices for inference.

Inference devices are commonly computers, Raspberry pi, Google Coral, Nvidia Jetson Nano,
and Intel Neural Compute Stick (NCS). These are also known as accelerator boards used in
image segmentation and recognition and object detection applications. The board can embed
with existing systems and devices for improving performance of image classification and
object detection applications. New objects can be trained on the CNN model to detect

accurately and classify images.

1.2 Statement of research problem

The research focuses on the use of accelerator boards to evaluate the performance of image
classification and objection using CNN techniques. The CNN model is usually written in
Python and the image dataset used is the open-source coco 128 dataset. The CNN model is
evaluated using different accelerator boards and the benchmark values determined. The
benchmark established is further optimized with optimisation techniques namely ResNet-18
and YOLO algorithms. The optimizations are benchmarked to identify the best performing
board, model and the hyper-parameter sets. The investigations are done to understand the board
that can provide performance characteristics such as speed, classification accuracy and energy

consumption.

1.3 Research Objectives
e Explore the techniques of CNN and evaluation metrics related to performance in the
area of image classification and image detection
e Explore CNN models and frameworks from literature and identify gaps in existing
research literature
e Develop CNN model for image classification and object detection using the coco 128
dataset available in open source

e Train the model using training dataset

e Identify accelerator boards for implementing inference datasets and embed with the
CNN model

e Obtain performance metrics for the accelerator boards used

e Evaluate the performance for the board after implementing optimizer algorithms
namely ResNet-18 and YOLO SDG

e Evaluate performance of the board after optimiser to understand the best performing

accelerator board

1.4 Significance of research

The area of image classification and object detection using CNN models face challenges in
terms of accuracy, speed, resources and energy efficiency. There are also many accelerator
boards made available for use in applications with embedded devices. The project makes use
of accelerator boards to understand the performance of CNN models in the area of image
classification and object detection. The dataset used as inference and the training model will
be implemented on each accelerator board. The performance metrics for each board are
obtained and he be performing board for use in image classification and objection detection
applications is identified. Given these aspects the project is considered significant. The scope
is limited to use of accelerator boards in CNN models to evaluate performance in the area of

image classification and object detection.

1.5 Structure of the dissertation

The report is developed to have the following sections as chapters.

Chapter 1 provides a high-level introduction to the research topic along with the problem
statement, project objectives and significance of this research. Chapter 2 presents the literature
review by exploring secondary research sources and studies summarized. The gaps found in

literature are presented. Chapter 3 explains the methodology followed in the research along

with dataset and analysis techniques used. Chapter 4 provides the implementation of techniques

and results along with discussions. Lastly conclusions are provided in the report.

2 Chapter 2: Background and Literature Review

2.1 Brief on ML

ML models a major sub-set of Al used to build computer models with capability to learn and
make independent decisions or predictions using input data. Accuracy of prediction or
decision-making is improved through the process of learning with each input dataset. ML
model was first developed in 1959 by Arthur Samuel who is considered the author of ML and
explains that with ML computers have the capacity for learning new skills irrespective of
separate and distinct programming. The learning is done using available datasets, and the ML
algorithm supported by mathematical models can support to make prediction or provide
support in decision-making. Two major ML types are namely the supervised learning and

unsupervised learning.

Supervised learning: This is one type of ML algorithms that make use of labelled datasets used
to train the ML model to predict correctly and recognize patterns. Supervised algorithms are

provided with labels to learn the relationship between inputs and outputs.

Unsupervised learning: This is another set of learning algorithms in ML that uses of un-
annotated data that is not labelled earlier by data analysts/humans or algorithms. The
unsupervised learning model will learn using the input data and will not expect values in the
absence of values for the given task from the given dataset. The algorithm in the absence of
labelled data will be grouped together on the basis of their characteristics. The main focus is
the machine will learn to identify patterns and group similar characteristic data without any
correct output. Unsupervised learning methods are of two types namely clustering and
association. Clustering refers to grouping data using their similarities or differences. The

association method will analyse the relationship between the data and the dataset.

10

Reinforcement learning: The RL learning technique will train the software to make decisions
and arrive at optimal results. This technique is based on the train-and-error learning process
used by humans to arrive at accurate results. There are three main approaches to RL namely

value-based, policy-based based and model-based.

2.2 Basics of CNN

CNN is based on DL architecture is widely used in image classification problems in many
applications and is an interesting area for research. CNN models make use of different network
layers known as convolutional networks, activation networks and fully connected- network
layers. Each of these layers has a different structure and associated mathematical operations.
The layer or different layers are chosen in combination according to the image classification
problem (Alzubaidi et al., 2021). According to Oh, Choi and Kim (2020), CNN models are
used to classify images and CNNs provide high performance. For instance, images with real-
world reflection or photographs having a high correlation with the surrounding pixels can be
evaluated using CNN. CNN models have the ability to maintain correlation data directly to
result in better performance. Better performance is achieved in CNN by the stacking of two

layers namely convolution and pooling.

In images, convolution layer will find data that is hidden from surrounding pixels through the
use of linear combination. In this method feature map size is reduced by the pooling layer.
Pooling layer will reduce resources required for the model to learn and avoid overfitting. By
repeated application of convolution and pooling layers, classification result is achieved by the
connected layer. The loss of any noted between the acquired and actual labels is used to train
the model through gradient descent or optimizer techniques (Zafar et al., 2022). Stankovic and
Mandic (2023) explain that DNN and CNN are models that are the de facto standards for

analysing large volumes of signals in images. There are many methods related to the CNN

11

model in its operation. Basically, CNN operations include pooling, padding and different ways

of reducing dimensionality.

2.2.1 Pooling

The pooling operation in CNN will down sample the feature map of output from convolution
layer. Pooling will maintain the most relevant information while decreasing the input spatial
size leading to a reduction of scope of the feature maps. This is an important layer because the
parameter needed for learning is decreased resulting in a reduction in computing on the
network. The pooling layer will summarise all features found in the areas on the image of
feature map. Hence, subsequent operations are done only on features that are summarised
against the features with the precise position in the convolution layer. In this manner, the CNN
model is made strong (Zafar et al., 2022). The pooling layer is of three types, namely max-

pooling, average pooling and global pooling.

Max-pooling operations will select the maximum elements from the filtered area in the feature
map. Output in max pooling is the feature map that contains the major or noticeable features
of the feature map. Average-pooling will compute average of all elements in the filtered area
in the feature map. This computation will provide average features present in feature map.
Lastly, global pooling will minimise every channel in the feature map to some single value
(Akhtar and Ragavendran, 2020). All these pooling operations can be performed using Keras

in the Python language.

2.2.2 Padding

Padding process is used to add extra pixels on the input image prior to the application of
convolution. The extra pixels will provide protection to the boundary around the image to
support the network to retain more spatial information. Padding is applied on all sides of the

input image in a symmetric fashion. Commonly, zero padding is one strategy where a bunch

12

of zeros are added around the input feature map. Other padding types include election padding
and replicating padding. However, the chosen strategy must support the task at hand. Padding
is important because it will help preserve the spatial dimensions of feature maps throughout

the CNN architecture (Shyam, 2021).

Padding the boundaries are extended in the input and further ensures each pixel will receive
equal treatment during convolution. Equal treatment is important to capture fine-grained
information, maintain information related to the position and avoid information loss near the
image borders. Padding when applied using some strategy will help CNNs balance feature
extraction, spatial preservation and downsampling. The convolution operations are equally

made for every pixel (Taye, 2023).

2.2.3 Dimensionality reduction

This technique will minimise features in data while retaining all the important information to
the maximum extent possible. Usually, data having a greater number of features or variables
are considered high-dimensional data in ML. contrarily in dimensionality reduction when the
number of features is reduced the model can deteriorate when dimensions are reduced and
hence this is a problem. However, in large image processing problems when the number of
features is increased, achieving a good solution can be difficult. Further high dimensional data
has other challenges like over fitting where model will fit with training data closely and will
not yield the right results on new data. Dimensionality reduction can prevent these problems
and improve generalisation performance. Dimensionality reduction has the approaches of
feature selection and feature extraction (Zebari et al., 2020). Dimensionality reduction uses the
methods of Principle Component Analysis (PCA), Linear Discriminant Analysis (LDA) and

Generalised Discriminant Analysis (GDA).

13

Classification of images has been of significant interest in ML research. Image classification
has the main objective of mapping the input data from image with one output class. For the
image X as input, this is mapped to Y output-class. For example, a refined classifier can
produce an output as a 'car' for a given car image. CNNs have many layers namely the
convolutional layers, down-sampling layer and activation layers. These layers operate with
some pre-determined function on the input data. Peng et al., (2020) explain that convolution
layers extract features that are low-level namely edges, and other layers extract semantic
features in the image input. Using a collection of input images, and using the process known
as backpropagation. Using the input image data the CNN model learns kernel weights and
biases. The values from kernel weights and biases are known as parameters that are used to
summarise important features found in images. The kernel weights perform an element-wise
dot product by sliding across an input image to provide results immediately. The results are
summed together with the learned bias value (Dhruv and Naskar, 2020). A generic architecture

of CNN is provided in the Figure 1.

[] — sicrcLe

FULLY

l ! INPUT CONVOLUTION + RELU POOLING CONVOLUTION + RELU POOLING FLATTEN CONNECTED SOFTMAX
HIDDEN LAYERS CLASSIFICATION

Figure 1: Basic CNN architecture (Mishra, 2020)

Subsequently, based on the input image, each neuron will obtain an output information. These

outputs are known as activation maps. The inputs in CNN are down-sampled using pooling.

14

Here, the parameters are decreased to solve over-fitting problem. Further, the activation
functions in CNN introduces nonlinearity. Nonlinearity refers to the model will be able to learn
complex information from input datasets. For example, Softmax is an activation function that
performs normalization on logits or un-scaled scalar values to produce output class with a score
of 1 as the sum (Marcu and Grava, 2021). Hence in comparison, image classification models
are over-parameterized and will lead to failure in taking advantage of inherent properties from
image data. Whereas, CNN createsrepresentations that are spatially aware using different

tacked layers of computation.

2.3 CNN functions

2.3.1 Sigmoid or Logistic Activation Function

The sigmoid function is a fundamental component of ANN and is important in ML applications.
This is a mathematical function to map input values between 0 and 1 to make binary
classification and is also used in logistic regression problems. In ANNs, sigmoid function is
used as activation function and in feed-forward neural networks(NN) where the sigmoid-
function is applied to each neuron output to allow the network to introduce non-linearity in the
model. Here, non-linearity is important as the neural network is allowed to learn more complex
decision boundaries thus improving the performance on specific tasks. This function is also

used in DL frameworks such as TensorFlow and PyTorch.

2.3.2 Tanh (Hyperbolic tangent activation function)

Tanh is another activation function having a centre at 0 and values ranging between —1 and +1.
This function is used in ANN in hidden layers to transform the input values to produce an out
between -1 and 1. This function incorporates non-linearity on the network so that the output
function will not be linear-function of input data. This function allows the network will learn

more complex and nonlinear relationships between the input and output data.

15

2.3.3 ReLU (Rectified Linear Unit) function

The ReLU function is used to solve the vanishing gradient issue in the DL model through the
introduction of the non-linearity property. The ReLU function is used in NN to speed up
training. Like the other non-linear functions, the ReLU function will help in the non-linear

transformation of data.

2.4 Evaluation Metrics

In image classification, DL techniques namely classification, segmentation, and object
detection are used frequently. These techniques make use of evaluation metrics that are
important to refine hyperparameters and features. Classification metrics are used to classify the
image. For example, binary classification will classify the object in the image. Binary
classification is used in healthcare applications to detect tumours, cancer, etc. Metrics are
important in classification models to provide accuracy and make the right decisions (Ferrer,

2022).

Vujovic (2021) explains classification metrics will predict class labels using input data. The
binary classification technique has two classes of output. For example, the spam classification
of an email is either spam or not spam. This can also be represented as positive and negative
or as 1 and 0 for spam and not spam respectively. Classification metrics are used to measure
classification performance. Some common metrics are Accuracy, Confusion Matrix, Log Loss,

AUC-ROC and Precision-Recall.

Accuracy: The accuracy metric will measure if the classifier will predict correctly. Accuracy
is calculated using the values of number of correct predictions divided by the total number of

predictions, given by the formula,

| ~ TP + TN
CCUracy = b TN+ FP + FN

16

Here, TP is true positive, TN is true negative, FP is false positive and FN is false negative.

Confusion matrix: This matrix is used in ML classification problems to measure output
performance. The output can be of two or more classes in combination to provide values based
on prediction and actual measure. A confusion matrix will explain the performance of
classification of the model for the given test dataset for the known true values shown in the

Figure 2,

True positive in the matrix implies positive predicted value and true. For example, in the image

the predicted value is ‘car' and the image is the image of a car.

A true negative implies, a negative value is predicted and it is true. For example, an image can

be predicted as a car, but actually, it is some other object.

False positive implies a positive prediction and it is false. Lastly false negative implies the

prediction is negative and the actual result is false.

Some of the metrics in the confusion matrix are precision, Recall or Sensitivity, F1 Score,
Receiver Operator Characteristic (ROC) and Area Under Curve (AUC)(Demir, 2022, p.317—

351).

17

Positive Negative

6 32
O B
— 0
0 a
T
()
)
O
L
B =
ful (o]
a 2

Figure 2: Basic Confusion matrix (Ahmed, 2023)

Precision describes the correctly predicted cases that are positive. The precision metric is useful

in cases where the concern for FP is higher than FN.

TruePositive

Precision = — "
TruePositive + FalsePositive

Recall (Sensitivity) metric will explain the actual positive cases predicted correctly in the
model. This metric is used when FN is higher than FP. Recall provides the value obtained as

true positives divided by the total of actual positive values for a label.

TruePositive
Recall =

TruePositive + FalseNegative

18

Specificity is another metric needed to correctly predict positive class in images. Specificity

will explain the negative classes that are predicted and correctly classified.

Truenegative

Specificity =
pecificity Falsepositive + Truenegative

The F1 score provides the combined idea to include both the precision-metric and recall-metric.

F1 score is maximum both precision and recall are equal.

Precision X Recall
Fl1=2X%

Precision + Recall

F1-score can be effective when both FP and FN are costly, TN is negative and when adding

more data will not change the outcome.

ROC is another measure based on a probability curve or plot showing the true positive rate
(TPR) versus the false positive rate (FPR) for different values that meet a threshold and separate
signal from noise. AUC measure will distinguish the classifier between classes. Both these

measures are graphs plotted using values obtained with earlier metrics.

Another important metric is log-loss or cross-entropy loss to evaluate performance of the

classification problem (Demir, 2022, pp.317-351).

The above metrics are available as libraries in Python code with the sklearn metrics library.

Further to classification metrics, the metrics for object detection are provided.

Intersection over Union (I0U) provides difference between the prediction bounding-box and

the ground truth bounding-box.

AreaofOverla
10U = / i

AreaofUnion

19

IOU is illustrated in the Figure 3,

Ground truth box

Intersection

Area of Overlap Detected box
IOU - =

Area of Union

Figure 3: lllustration for intersection over union (Simic, 2024)

MAP is another object detection metric known as mean average precision (mAP). First, the
measure namely average-precision (AP) is obtained using area of the precision recall curve.
mMAP provides the average of calculated AP of a total number of classes to arrive at an accurate
value from a group of object detections. The value is then compared with ground-truth

annotations of objects in data.

2.5 Datasets

2.5.1 COCO dataset
The data source used is the COCO (Common Objects in Context) dataset available in open

source. This dataset is widely used in ML projects. This dataset was created to support
advanced development in image recognition. The COCO dataset is a collection of high quality
visual images for benchmarking algorithms to evaluate performance of real time object
detection and in computer vision advanced neural networks. Some unique features of coco
dataset in ludes object segmentation, detailed instance annotation, recognition with 80 object

categories and 91 stuff categories having unique contextual information (Meel, 2021).

2.5.2 COCO128

20

The coco128 dataset is a subset of the 128 images of the coco dataset (Singh et al., 2024). The
cocol28 dataset is reused as a training dataset for validation and testing and to ensure the
training dataset works correctly and can over-fit the small dataset. The Cocol28 dataset is
commonly used for the first time to test out the CNN models. This dataset provides has visual
images in high quality for processing in computer vision and for use in state of-art neural
network applications. The coco 128 dataset is used to benchmark algorithms for comparing

performance in real-time object detection (Li, Yan and Du, 2022).

Hyper-parameters or variables in the coco 128 dataset: Hyper-parameters refer to variables
used to determine the structure of the network or to identify the number of hidden units along
with variables used to train the network. Hyper-parameters are set before training or before
optimising weights and biases (Hossain and Timmer, 2021). The hyperparameters in the dataset

will include,

e Number of hidden layers — implies the number of layers available between the input
and output layer. Regularisation technique improves accuracy. Underfitting is a result
of'a small number of units.

e Dropout — This is a regularisation technique used to avoid over-fitting or to increase the
accuracy of validation. A large network will likely provide better performance because
the model will learn independent representations.

e Network weigh initialization — Weights are dependent on the activation function used
in each layer. The activation function will introduce non-linearity to the models
allowing DL models to learn the boundaries in non-linear prediction.

e The sigmoid function is used in the output layer to make binary predictions.

e Softmax used in the output layer will provide multi-class predictions in the data.

21

Hyperparameters for the training algorithm are: learning-rate, momentum, number of epochs

and batch-size.

2.5.3 Large scale visual recognition challenge (LSVRC)

The ImageNet LSVRC (ILSVRC) dataset is used in computer vision to support research in
image classification, object-detection and to understand visual images. This dataset has
millions of images under thousands of different categories and classes. The images in the
dataset are labelled. This dataset is widely used in DL algorithms, CNNs that are trained and
benchmarked on subsets of the dataset. For instance, the CNN models such as ResNet, AlexNet,
and many others were developed and evaluated using this dataset. ILSVRC dataset is available
openly and used by researchers because the dataset is split as training, validation and test
datasets with labels. Using this training set the CNN model can be evaluated for performance

of trained models (Mandeep, 2024).

2.6 CNN Models and Frameworks

The commonly available CNN models are explained in brief.

2.6.1 AlexNet

AlexNet is a CNN model having 8 layers. This model has the ability to process pretrained state
of the network that has over a million images from ImageNet database. This pretrained network
has the ability to can images as 1000 object-categories namely animals, mice, pencil, etc. This
network provides rich features for a range of images. AlexNet network can be trained on image

datasets and the function needs the DL Toolbox model.

2.6.2 ResNet
The ResNet is another CNN architecture introduced by Microsoft Research. When the number

of layers in CNN architecture increases it was noted the error rate was high due to fading

22

gradient. The problem of fading gradient is solved by the ResNet architecture using the concept
ofresidual blocks and skip connections. The skip connection will connect activations to a layer
and more layers and skip some layers in between. This method forms the residual block, and
the ResNet network will stack the residual blocks together and overcome the limitations found

in traditional CNN architectures.

2.6.3 GoogleNet

This network was proposed by Google Research in 2014 to address image classification
challenges. The network provided a significant reduction in error rates compared to AlexNet.
GoogleNet architecture involves different methods such as 1x1 convolution and global average
pooling. These methods enable the creation of deeper architecture. Basically, the 1xI
convolution will decrease the numbers of weight and bias in architecture. This reduction in
parameters results in an increase in the depth of the architecture. This architecture is made up

of 22 layers and trained on the ImageNet database to classify objects in over 1000 categories.

2.6.4 MobileNet

This network architecture is used in CNN models for mobile vision applications, the network
is not resource-intensive. Mobilenet is commonly used in real world applications like object
detection, face attributes, image classification and localization. This network is embedded in
vision applications and the work is based on depth-wise separable convolutions to build

lightweight DNNs to have low latency.

26,5 YOLO
You only look once (YOLO) is another type of accelerator to optimize filter switching activity.
CNN models make use of YOLO to obtain good performance but YOLO needs large computing

and memory bandwidth. YOLO algorithm is popularly used in with real-time object-detection

23

capacities with high performance. Two optimizers are available for YOLO namely the SGD

and Adam.

SDG: The SDG is an optimization algorithm used in ML applications. This algorithm will
update the model parameters found in the directions of negative-gradient of loss-function with
respect to the parameters. This algorithm will reduce the loss function in ML and hence is
considered an optimizer. The model parameters in this algorithm are updated iteratively in
small batches of data instead of the entire dataset. This works efficiently for tasks involving

complex image structures, but SDG is more effective with smaller datasets.

Adam: The Adam optimization algorithm for SDG is used to train DL models. This is a variant
of SDG and combines momentum ideas and adaptive learning rates. The adaptive learning rates
are maintained for each parameter where the moving average of past gradients decays
exponentially. Adam supports improving performance significantly and combines with LAWN

to act as an optimizer in image classification problems.

2.6.6 Frameworks

TensorFlow: The TensorFlow framework developed by Google Research is used in ML, DL
and other workloads involving statistical and predictive analytics. This is an open-source
framework and platform for ML to includes Python and Java libraries and tools. The framework
is designed to train ML and DL models on data. This framework is widely used image-

recognition applications.

Pytorch: Pytoch is another DL framework, available in open-source and is a flexible and easy-
to-use application. Pytorch is enabled using Python programming and used in developing ML
models and in ML applications involving image-recognition and natural language processing
(NLP). Pytorch in Python programming is available from the Torch library and is used in

computer vision applications.

24

2.7 CNN for Image Classification Problems

Multiple studies were identified in the literature that explain CNN algorithms for solving image
classification problems. Sun et al., (2020) stated that difficulties exist for users in designing a
CNN architecture to solve the problem of image-classification. To overcome this limitation, an
automatic CNN architecture based on a genetic algorithm is proposed to handle image
classification tasks. The automatic characteristic implies the user does not require domain
knowledge while using the proposed algorithm but can be used to design a promising
architecture for CNN based on the input. The developed algorithm was evaluated with other
state of the art peer competitors and used image benchmark image classification datasets. This
experimental study indicated the proposed algorithm performs better compared to available
algorithms in CNN architecture related to a number of parameters, accuracy and compute
resources. However, the proposed algorithm must be further tested to provide accurate

performance results with different image inputs from different locations.

Wang, Fan and Wang (2020) provided a comparison of ML and DL algorithms for solving
image classification problems using SVM and CNN as examples. The results of this study
indicate that SVM provided 88% accuracy while CNN provided 98% accuracy while using the
Mnist dataset. The comparison was further made using the COREL1000 dataset and found that
the accuracy was 0.86 and 0.83 for SVM and CNN algorithms. The article presents an
experimental study to understand DL and traditional ML algorithms and finds that the DL
framework has the capacity for higher accuracy even in large dataset samples.

Chen et al., (2021) to understand CNNSs provided a detailed review of CNN development and
state-of-the-art architecture. The review basically takes into account, structure of ANNS, the
basic CNN layer, the classic predecessor model and algorithms. The different image
classification methods are also compared and presented in article, summarised and discussed.

The article provides a related mathematical model for each of the reviewed network

25

architectures and models. The article is more theoretical in nature, however, the problems

related to efficiency and accuracy found in CNN models were not analysed in detail.

Qin et al., (2020) proposed a classification method for biological images to overcome the
drawbacks in CNN when classifying images. The drawbacks considered in the study are
improving classification accuracy and making a lightweight network. The classification
method made use of fixed-size images as input and the images had large sizes. The method
also makes use of an Inverted Residual Block module to reduce computation costs and
parameters. The results demonstrate the proposed method shows better performance in image
classification with a reduction in network parameters and compute costs. However, the method

proposed is experimental and results must be further verified with more image datasets.

Bakhshi, Chalup and Noman, (2020) present a genetic algorithm to optimise the CNN model
and to overcome drawbacks on the accuracy, compute cost and performance. The authors used
CIFAR10, CIFAR100 and SVHN datasets to experiment and investigate the automatic CNN
architecture to reduce cost automatically. The results presented from this experiment indicate
that GA evolved CNN model is competitive with other best existing models. However, this
claim made in the study must be further verified with different sets of image datasets and from
different locations. Valarmathi et al. (2021) made use of the KNN classifier in the horticultural
field to identify plant attributes. The framework presented uses content from the picture and a
classifier with naturally regulated approaches to determine plant species when the picture is
given as input. This plant classification algorithm is a CNN model and will determine whether
the leaf is agricultural, herbal or poisonous. However, the idea presented works well for static

images, more testing will be needed using camera and sensor devices in the real world.

26

From the reviewed studies it is noted that image classification using ML algorithms, the DL
framework with CNN model provides better performance and computational cost. The studies

also highlight the need for more efficiency in terms of classification accuracy and performance.

2.8 Related work on CNN models and applications

Dhillon and Verma (2020) provided a detailed review of different deep architecture models to
highlight the characteristics of the particular model. Multiple models of CNN namely LeNet
model, AlexNet, ZFNet, GoogleNet, ResNet, ResNeXt, DenseNet, VGGNet, Xception, and
PNAS/ENAS are compared and reviewed for detecting wild animal, small arm and human
beings from the given input image dataset. Multiple datasets were used and the results were
summarised with variations in accuracy and performance.

Du, Zhang and Wang (2020) present a review of wo-stage detection algorithms to explain the
working principles of Fast R-CNN, R-FCN, FPN and Cascade R-CNN. The article provides an
analysis of the similarities and differences between these algorithms. The performance of
Faster R-CNN, R-FCN, FPN and Cascade R-CNN two-stage detection algorithms for its
effectiveness by using HSRC2016 ship database set. The results indicate that Cascade R-CNN
was highly effective in object detection and the R-CNN algorithm was less effective. Also,
FPN and FCN algorithms were less effective in comparison to the Cascade R-CNN algorithm
because this algorithm uses a full CNN structure. However, to enhance Faster R-CNN
algorithm to be effective efficient feature extraction is needed. This study provides an overview
of two-stage object detection.

Sultana, Sufian and Dutta (2020) provided reviews of image-detection models developed using
CNN. The review includes both the categories of one-stage approach and algorithms with two-
stage approach for image-detection. The study provides a comparison of R-CNN, YOLO and
RefineDet (one-stage detector). The architecture is described for these models along with a

comparison based on qualitative reviews. Such studies are based on secondary reviews and

27

comparisons using existing experimental investigations. Studies related to CNN optimiser and
accelerator were identified from the literature.

In one study related to brain tumour detection, Hafiz et al., (2023) used the Br35h dataset for
brain tumour detection to compare and contrast different CNN models. The models include
LeNet, AlexNet, VGG16, VGG19 and ResNet50. The CNN performance was fine-tuned using
optimisers namely adaptive movement estimation (Adam), stochastic gradient descent (SGD)
and root mean square propagation (RMSProp). The study determined values for accuracy,
misclassification rate, sensitivity, specificity, negative and positive prediction values, F1 score
and false omission rate (FOR). This metric value was obtained to evaluate the accuracy of CNN
architectures when using three optimizers. The results indicate that the SDG optimiser
performed better than the other optimisers providing an accuracy of 98.79% and high values
for the other metrics. This study though experimental in nature emphasises the need for

optimiser in improving the performance of object detection and classification.

Studies highlight the use of optimises in object detection in the area of healthcare. The study
by Sharma, Mehra and Kumar, (2020) demonstrates the use of an optimiser and a pooling
strategy to detect breast cancer from histopathological images with good performance.
Chowdhury, Dasgupta and Nanda, (2021) present the method to show the use of optimisers on
different layers of CNN to efficiently detect pneumonia and support physicians in treatment.
The study was demonstrated using the chest X-ray image datasets from Kaggle. The SDG
optimiser was used to obtain a high accuracy of over 90% with good performance. Gulakala,
Markert and Stoffel, (2023) explain that CNN models can be used to determine infected lungs
and noninfected lungs in patients. However, such models require large training datasets to
ensure high levels of accuracy and performance. In requirements where accuracy must be high,
the role of optimisers is significant to ensure classification accuracy. Zhang et al., (2020)

presented the use of a CNN accelerator based on FPGA. The accelerator receives signals for

28

configuration from an ARM to complete the different calculations. Using a combination of
CNN and pooling operations the calculation performance was improved. This model was
implemented on Xilinx ZCU102 FPGA for YOLOv2 and YOLOvV2 tiny models on COCO

datasets. The study explains peak performance was obtained at 300 MHz clock frequency.

Kim et al., (2020) proposed a low-power face recognition CNN model with high efficiency on
mobile devices with promising results. In another study, Srivastava and Sarawadekar (2020)
explain the need for GPU for increasing computing performance. The authors present a pipeline
architecture of Depth-wise Separable Convolution based on the layers of activation and pooling
as a single-layer CNN. The implementation was done on Xilinx 7 series FPGA to work on a
clock-period of 40 nanoseconds. This architecture is important as it provides the foundation for
developing an integrated system of CNN accelerators to implement in FPGAs of different
configurations. This architecture provides an integrated system design of CNN accelerators to

improve performance and support users with FPGA-based accelerators for CNN.

2.9 Summary and Gaps in Literature

In summary, the literature reviews provide explanations of key concepts, with brief coverage
of DL architecture and the working of the CNN architecture model. The different DL-related
algorithms were also briefly summarised along with the details of CNN operations and
techniques. The use of different algorithms that complement the CNN model is discussed in
the area of object detection and image classification. The evaluation metrics are provided
briefly for their importance in image classification and object detection. The classification
algorithms and applications found in studies are provided in the review. The literature on CNN
models and applications highlights studies that demonstrate the importance of optimisers and
accelerators to improve CNN performance. Some of the challenges identified in the literature

include,

29

Large datasets are needed to train the model.

Need for high computing and memory requirements

The model tends to become slower during the training phase.

Finding a balance between a smaller number of parameters and performance is a
challenge.

When there is a shortage of labelled data, this impacts the image classification

outcomes.

Gaps identified in the literature are,

Not many studies could be found that highlight the need for reduced training datasets,
in most of the studies large training datasets are recommended to achieve accuracy
performance.

Studies highlight the challenges related to data labelling as it can be time-consuming
and costly. This is particularly noted when the CNN model is trained from scratch.
Not many studies were identified that highlight the challenges found in the CNN model.
Studies that compare different accelerator boards could not be identified immediately

in the literature. This project shall address this gap.

30

3 Chapter 3: Methodology and Implementation

3.1 Setting up Nvidia Jetson Nano

The Jetson Nano developer-kit is open source and is used in inferencing and training DNN
networks for object-detection, semantic-segmentation and image-classification. This developer
kit involves an Al computer system (chip) to support developers or students to build

applications and so on. An illustration with interfaces is provided in the Figure 4 below.

The kit has the ability to capture and process real-time camera feeds and video streams and
obtain the dataset using an API available in Python. As a first step, the developer kit is charged
using the micro-USB port. A computer system or PC with internet connectivity is needed to
read-write on SD cards using a built-in SD card slot. The developer kit with SD image location

is found on the computer, based on the operating environment.

Figure 4: NVIDIA Jetson Nano representation with devices and interfaces

The micro-SD card is flashed using the SDK manager tool and the Jetson nano is set. The

interaction with the development kit is through a display, keyboard and mouse or using a mode

31

from another computer. After the developer kit is booted and ready, the data directory will have

the image data used for classification and object detection.

In Github there are pre-built docker images for the project or use with different versions of
JetPack. The images are available and hosted on DockerHub, or the project can be built from
scratch. The containers use Pytorch-based base containers to support training models. The
transfer learning is already included in the container. The container is launched using the
docker/run.sh script to use the correct container based on the version of JetPack. The data
directories are mounted to include the use of cameras/display/etc in the container. After launch
the container runs to execute programs and applications. The scripts will also run on x86
systems that have NVIDIA GPU however, the NVIDIA drivers must be installed to support the

GPU in docker.

3.2 Image classification

With Jetson Nano DNNs are provided with image recognition and classification to identify
scenes and objects. The imageNet object will accept image input and the probability of each
class from the dataset. The images in the dataset were trained, and the GoogleNet and ResNet-
18 models were downloaded and used in the testing stage. For instance, images of white sharks,

Figure 5 are used for object detection and classification.

32

90. 19% great white shark, whit

Figure 5: Image of great white shark used in testing

The sample image in the Figure 5 is loaded along with additional images, as in Figure 6

Figure 6: Image (hammer head shark) used for testing

For the sample images above the ResNet-18 pre-trained image classification model is available
for use in ImageNet Program on Jetson Nano. Here the classification model to load can be set
using the --network flag on the command line in ResNet-8. The script for loading the white

shark in the ResNet-18 model is,

33

J/imagenet.py --network = resnet-18 images/whiteshark.jpg

images/test/output_whiteshark.jpg

./ imagenet.py --network = resnet-18 images/hammerhead.jpg images/test/

output_hammerheadshark.jpg

For identifying the bird in Figure 7,

/imagenet.py --network = resnet-18 images/Americanrobin.jpg images/test/

output_Americanrobin.jpg

Figure 7: Testing for image classification, the bird in the picture

From the Figures 5, 6 and 7 it is noted the accuracy of classification is over 90%.

3.3 Object Detection

In addition, the object detection was tested using the models from the dataset. Object detection
will find the objects in the fame through the extraction of their bounding-boxes. Object-
detection networks can detect different objects in a frame. To perform object detection, the
detectNet object is used to input the image, the outputs will consist of coordinates related to
detect bounding-boxes along with their class and confidence values. detectNet is available in

Python language. As earlier, pre-trained models for detection are available for download. The

34

default model used is the SSD-Mobilenet-v2 model trained using the MS COCO dataset to
achieve real time inferencing performance with Jetson Nano. The detectNet program has the

ability to locate objects in both static images and video streams.

The following command line options are used,

--network flag is used to change the detection model, default is SSD-Mobilenet-v2.

--overlay flag is an option and helps in comma separated combination involving box, labels,

lines, and none.

--alpha option is used to set the alpha-blending value during overlays, with a default value 120

--threshold option value will set the value for minimum threshold to detect the image, default

1s set at 0.5

The output images are saved on the images/test directory if the Docker container is used. The
images are easily viewable from this directory through a host device in jetson-

inference/data/images.

Figure 8 provides an example to detect pedestrians using the ResNet-18 model.

35

Figure 8: Test for object detection model, detected pedestrian

The next Figure 9 detects a group of pedestrians irrespective of objects in the image.

person 98, 6% -
N persom 77. 8%

Figure 9: object detection, detecting more than one pedestrian

The above example images for detecting pedestrians were done using the ResNet-18 model,

the image data was obtained from the default SSD-Mobilenet-v2 model. The script used is,
./detectnet.py —network=ssd-mobilenet-v2 images/peds_0.jpg images/test/output.jpg

To detect one pedestrian as in Figure 8 the script is

36

Jdetectnet.py images/peds_1.jpg images/test/output.jpg

Likewise, the Coco 128 dataset which has images of different objects such as animals, vehicles,

humans, etc., was used to detect objects from a selected image.

In case there are multiple images where one-time processing is required, the detectNet program

is launched with directory path of images data using a wild card sequence as in the script,

Jdetectnet.py “images/peds *.jpg” images/test/peds_output %]1.jpg

Object detection is also possible using video files and camera streams in real-time using the

above techniques.

3.4 Optimizations
The image classification and object detection were further optimized using the Resnet-18, Yolo

v5 and Yolo v7.

3.4.1 Resnet-18
This architecture has 18 convolution layers. The Resnet-18 model is used to train and test the

model. The steps followed in training the model include,

e Load the data (data loader)

e Transform data

¢ Build the model, here the epochs are set, learning rate, momentum and output classes
are set for the model.

e The model is trained and the best trained model is saved.

e The steps followed in testing using Resnet-18 include,

e Data loader

e Transform the data

e The saved model is loaded as input

37

e Test images are predicted (image classification, object detection)

e Alert if the intended object or image is found

Importantly to build the Resnet model some parameters have to be set for each use case. Since
output classes in the Resnet model are high, the very last-layer of the ResNet model is changed
according to the given use-case for prediction. The other parameters to build the model include
epochs, learning rate momentum and the optimizer. For instance, a model having learning rate
0.001 and momentum of 0.09 will iterate over 10 epochs for binary classification and 50 epochs
for multiclass classification while using the stochastic gradient descent (SDG) optimizer. The
model after it is built is trained with the prescribed parameters. The model performance after
each completed iteration is evaluated and model weight values saved to verify the best
accuracy. In this manner, evaluations were repeated till the very last epoch and lastly, two best
models were achieved, one for binary-classification and the other for multi-class classification.

These entire iteration steps were performed on the Jetson Nano.

3.4.2 YOLO v5

Yolo v5 has the ability to improve optimizer, learning rate and momentum turning. Yolo 5
model optimizer algorithm with advanced target detection capability. Yolo v5 has two content
security policy (CSP) structures namely CSP1 x and CSP2 x. These structures support
extracting generic features from the image. Yolo v5 will self-adapt, which implies this will
adapt to change the network width and by changing parameters of its own volume scale. These

features in Yolo v5 guarantee good training results and high accuracy in object detection.

343 YOLOV7
This is an improved version of the DL algorithm considered in the research to ensure the
feasibility of object segmentation. To deal with object segmentation in complex backgrounds

this algorithm's accuracy can be further improved by adding an attention mechanism. Also, by

38

introducing weighted loss function semantic segmentation in images having complex
backgrounds can be improved for detection accuracy. Further, YOLO v7 is faster compared to
other algorithms and due to its detection speed accurate semantic segmentation is achieved

quickly. For instance, pedestrians can be quickly detected in Figure 9.

Yolo V7 has four layers namely feature extraction, feature enhancement, detection and post-
processing layers. In Yolo v7, the initial three layers are processed using a traditional
convolution layer and the rest of the layers processed using one convolution and pooling layers.
Basically, the algorithm will extract effective features from images. A CNN is used in the Yolo
v7 algorithm and has three modules for convolution namely the LSTM, Dropout and Softmax
output modules. Here, the LSTM will detect using the connection and full activation, where
the dropout module will be added after the first two networks to avoid over-fitting. The sotmax
output module is processed by the convolution to obtain the desired result. The speed and
accuracy of Yolo v7 are improved when processing is done in GPU. Yolo v7 provides 120%

faster processing compared to Yolo v5 with improved accuracy and speed.

3.5 Research Design

The research design follows the qualitative research approach. Qualitative research is
considered for the project as it aims to provide answers on how the performance of image
classification can be improved using different CNN models using different accelerator boards.
This research design also helps to develop predictions, and new ideas and gather new
information related to the project (Kyngds, 2020). In addition to qualitative design, the design
also considers exploratory and diagnostic approaches. An exploratory research approach is
used to explore and improve the ideas surrounding image classification performance. Also,
missing data related to the research project can be identified with exploratory research. The

diagnostic approach to the project will evaluate the reasons for a certain phenomenon and

39

consists of three stages namely problem inception, diagnosis and solution (Mishra and Alok,

2022). Given the above aspects, the project follows a mixed research approach.

3.5.1 Data Analysis

The analysis of data involves the comparison study of different accelerator boards. The
accelerator boards. There are various accelerator boards used to deploy DL applications that
are resource-intensive. Commonly the accelerator board often make use of GPU or FPGA.
CNN model will convolute filters with an input image to develop feature maps (Mittal, 2020).

The convolution will involve four steps,

1. Over-laying the filter at an image location

2. Determining the product using the filter value with the corresponding value of pixel on
the image

3. Adding the above product, the sum is the value obtained will be the target value of the
image output

4. The above three ep are repeated for all the positions in the image

To perform the above operations the CPU is inadequate and hence accelerator using FPGA is

used.

GPUs: Graphics processing units are another type of accelerator to implement the CNN model
for achieving high performance. GPUs have the ability to process large data in parallel to

support the algorithm to perform in terms of magnitude and faster than traditional CPUs.

Google Coral: This accelerator works using a USB port and provides a tensor processing unit
(TPU) to the system. This setup enables high-speed ML inferencing on a range of systems and
works easily as the connectivity is through a USB port. The platform interfaces easily with
neural networks for accelerating and with embedded devices. The accelerator is enabled by an

Edge TPU co-processor that provides high performance in neural network inferencing.

40

Nvidia Jetson Nano: Jetson Nano is an Al computer for use with embedded devices to harness
Al capabilities. This is used along with embedded IoT devices to deliver the power of modern
Al systems. The system comes with Jetpack SDK with libraries for accelerator, DL, graphics,
multimedia, computer vision applications and so on. The NVIDIA Jetson Nano module is used
in computer vision applications to perform Al-based vision tasks such as object detection,

image segmentation, image classification, and so on.

Intel NCS accelerator board: Intel NCS (Neural Compute Stick) is a USB-based plug-and-play
Al device or DL inference application. This device involves Intel MovidiusMyraid X VPU with
16 programmable shave cores and a dedicated neural network compute engine for hardware

acceleration in DL inferences.

3.5.2 Epochs

Epoch refers to all the training set being used once to reach the total number of iterations of all
the training dataset in one cycle. All the training data is exactly used once. This refers to one
cycle for training the training model. The epoch is understood as the number of passes the
training set is given as input to the algorithm. Here, the forward pass and backward pass is the
count of one pass around the algorithm. Epoch comprises of one or more batches used to train

the neural network (Oyama, Koyama and Kawasaki, 2023)

3.5.3 Batch Size

Batch size is an important hyper-parameter in ML. The hyper-parameter defines the number of
parameters to work with before the internal model parameters are updated. Batch size is highly
essential to ensue he model will provide peak performance. In CNN models, the batch size
indicates the number of samples processed before updating the model. The epochs number is
the number of complete passes through the training dataset. Here, the size of a batch must be

almost equal to the number of samples in the training set (Citovsky, 2021).

41

3.5.4 Learning Rate

Learning rate indicated by a, a hyper-parameter used to manage the rate at which an algorithm
will update or learn the values of parameter estimates. The learning rate will regulate weights
of neural network related to loss gradient. In CNN models the learning rate can be configured
hyper-parameter that is used in training the network. Here, the learning rate has a small positive
value in range 0f 0.0 to 1.0. This hyper-parameter is used to control the model to quickly adapt

with the problem being solved (Wienan et al., 2020).

3.5.5 CNN Models

Mask R-CNN: This model name stands for Region-based CNN (R-CNN), an extension of the
Faster R-CNN algorithm for object-detection. The Mask R-CNN is an ML model also used, for
instance, in segmentation tasks in computer vision. At a conceptual level, Mask R-CNN
provides outputs for each candidate object, two outputs namely one class label and bounding
box offset. A third branch in the network outputs a distinct object-mask. This implies the Mask
R-CNN will add a branch to predict segmentation masks on each Region of Interest (Rol). Rol
will be generated in parallel with the branch for classification and bounding box regression

(Zhang et al., 2020b), illustrated in Figure 10.

RPN | For Each Spatial ; :
: ! Location 3
i[7] Objectness

i1 Classification }:
i[] Bounding BoX i jeeesesseseemeeneeenenieinenaneees
il] Regressor i For Each Rol

Input image Extract featurcs Fcaturc maps Rcgion proposals Classification Output

42

Figure 10: Image segmentation using Mask R-CNN architecture (Zhou et al., 2021)

This is an extension of the stage Faster R-CNN that has a Region Proposal Network (RPN) to
recommend bounding-box for the candidate object as the first stage. The second stage will
extract features from the Rol (Region of Interest) Pool or RolIPool to classify the image. The
second stage is in parallel to the prediction and box offset, the Mask R-CNN will provide the

binary mask for each Rol as output.

The model is based on the DL mechanism and hence the capability to classify objects as
different classes, surround them with bounding boxes and create a mask for detected objects.

The loss function (Podder, Bhattacharjee and Roy, 2021) is provided by,
L = Les + Lpox + Limask

where L. 1s the loss of classification, Lpox is the loss of bounding-box and Las 1s the mask

loss.

The mask branch will have one Km’ -dimensional output for each Rol. The output will encode
K binary masks of resolution m x m, for each K class. Next, the per-pixel sigmoid is applied
and Lyask 1s defined for the average binary cross-entropy loss. The average binary cross-entropy

loss (Podder, Bhattacharjee and Roy, 2021) is given by the expression,

L 1 [yijlogyk + (1 — y;;)log(1 — ¥5)]
mask m2 yU gyl] yu g yl]

150,1<)

Here, the label value of'a cell (i, j) of any region with dimensions m x m is given by the predicted
value of the k' class of that cell given by y; i 37{5-. In Mask R-CNN the loss function is

minimised almost as zero while training the dataset, this also implies the model will perform

without the problem of over-fitting.

43

3.5.6 Hardware and Specifications

The development boards used for comparison are:

- Google Coral

- Nvidia Jetson Nano

- Intel NCS board

- Alaptop computer and Raspberry P14 are used for the implementation.
- CNN models used: Mask R-CNN and YOLO

- Programming: Python or C/C++ language

The training dataset model and the inference datasets shall be implemented on each board. The
performance metrics will be obtained for each board. To increase performance optimisations
will be done using characteristics such as speed, accuracy of classification and energy

consumption.

Increased performance shall be achieved by training the hyper-parameters and values or metrics
obtained for comparison purposes. The coco 128 datasets are used in real-time object detection,
the dataset used as input for training and testing to prototype different CNN models in different
accelerator development boards. The CNN models used are benchmarked against each other,
and after establishing benchmarking the hyperparameters are optimised. Subsequently, the
hyper-parameters will be increased to improve performance on each of the accelerator boards.
The accelerator boards are optimised and based on the output performance of each board the
best-performing board and hyperparameters are noted. The most optimal result will indicate

the board that is providing the best performance.

44

Chapter 4: Results and Discussions

Object detection and segmentation is done using the YOLO algorithm. YOLO will look at the
image once to predict the objects present along with their position in the image. YOLO is a
single CNN to predict multiple bounding boxes and class probabilities for these boxes
simultaneously. As the entire image is seen, during training and testing the entire image is
implicitly encoded with contextual information on classes along with the appearance. Another
advantage of YOLO is that it can learn generalizable representations of objects and hence this
model can be applied to new domains and can handle unexpected inputs (Diwan, Anirudh and

Tembhurne, 2022). An illustration of YOLO in object detection is provided in Figure 11.

YOLO

fully fully

x B times X

nected connected & . C ;W‘S

: I >< >< (x, . W, h, obj score) | class provabilty | M=K
: DarkNet f
]

.. ' Architecture length: 5B+C

Figure 11: Object detection using YOLO. For example, the detection of road signals
(Flores-Calero et al., 2024)

The detection mechanism has unified components separated into one single neural-network.
The network uses features from the full-image to predict each bounding-box. YOLO can
predict all the bounding boxes across different classes in the image simultaneously. This
implies all the objects in the image can be classified. YOLO design supports end-to-end
training and real-time speeds along with high average precision maintained (Liang Tianjiao

and Hong, 2020).

45

For instance, an input image is first divided as a S x S grid, so the centre of the object falls in
the grid the grid cell has the responsibility to detect object. The bounding box B is predicted
by each grid cell along with confidence scores for these boxes. The confidence score indicates
the level of confidence of the model and the accuracy decided by the model for the box

predicted. Confidence is defined as,

Pr(Object) x IOUS 4"

This implies that confidence is the product of the predicted object and the intersection over
union (IOU) of prediction. In the absence of no object on the cell, zero will be the confidence-
score. In case the object is present in the cell, the confidence-score will be equal to IOU present
in the box predicted and the ground-truth. Each bounding-box will have S5-predictions
represented as x, y, w, h and confidence. The coordinates (x, y) indicates the centre of the box
in relation to boundary of the grid-cell. The width and height values are predicted based on the
full image. Lastly, the confidence prediction will represent the IOU between the predicted and

ground-truth boxes.

Further, every grid cell will predict C-conditional class probabilities. The probabilities are
associated with the grid-cell having the object. Predictions can be made for one set only with
the probabilities for each grid-cell irrespective of the number of boxes B. During the testing
model, the conditional class probabilities and the individual box confidence predictions are

multiplied by the expression,
Pr (Class;|Object) * Pr (Object) * QU4 = Pr(Class;) * 10U 4"

The above expression will provide class class-specific confidence score for each box. These
scores will encode the probability of the class appearing in the box and on how well the

predicted box fits the object.

46

As mentioned above, YOLO can predict several bounding boxes for each grid cell. During
training, one predictor can be assigned as responsible for predicting the object in the image.
For example, the road signal. This prediction will have the largest current IOU with ground
truth to result in specialisation between bounding-box predictors. These aspects support each
predictor to predict more accurately based on size, aspect ratio, and class of object thus

improving the overall recall (Joseph et al., 2021).

Using the optimizer techniques the Jetson was trained and results discussed. Results indicate
that at epoch 30 the Resnet-18 model achieved 80% accuracy for both image classification and
object detection tasks. Further at epoch 65, the weights converged on 82.5% accuracy. Hence,
it was noted that while training time is increased, the accuracy can be improved further while
the dataset is also increased in terms of size. The Cat/Dog object from the image dataset was

trained using the ResNet-18 model, shown in graph, Figure 12.

ResNet-18 Training
Cat/Dog Model

19a
98
aa
78

68

fccuracy

58

4a

28

1@

8 5 18 15 28 25 3@ 35 48 45 5@ 55 6@ 65 7@ 75 Be 85 9@ 95

Epoch

Figure 12: Training results using Resnet-18

While training it was noted that Jetson Nano was not efficient as 1 epoch took almost 15

minutes to train and provided 50% accuracy. However, after 30 epochs 80% accuracy was

47

achieved. However, the time consumed for training is too high. From the graph it is noted that
when the number of epochs is increased the accuracy is also gradually increased. Hence more
complex datasets are needed. More number of iterations must be performed to improved
accuracy. In order to shorten the time consumed during training the optimizer discussed earlier
were used for image classification and object detection while using Jetson Nano. The outputs
for object detection and image classification outputs using test dataset were effective as it could
provide over 90% accuracy as mentioned earlier using the model. The role of optimizers was
important to improve the efficiency, but there is still need or more computing resources in the

presented model.

48

Chapter 5: Conclusion

The report introduces a new technique in image classification and object detection. The use of
CNN, Al, DL and ML algorithms and techniques are significant in the area of image
classification and object detection. From literature it was noted that a lot of studies present the
use of DL algorithms and CNN models for image segmentation. However, not much data was
identified in the area of improving performance using accelerator boards and optimization. This

research aims to mainly address this gap.

The report explains different CNN functions and methods and highlights the evaluation metrics
used in performance measurement. The CNN models and frameworks explored are explained
briefly to highlight the role of CNN in image classification problem. The methodology sections
highlight the methods followed in this research along with data sources, the variables identified
and data analysis techniques followed in this project. The hardware specifications of the boards
are briefly described along with the steps or techniques for optimization. The optimization
techniques used in the project are ResNet-18 and YOLO SDG and Adam algorithm. The image
classification accuracy for some random images from the coco 128 dataset obtained were above
80% after training the model using 50 epochs. It is note that the model can improve accuracy

and performance when more datasets are trained.

Future work: Further work on this topic will involve training more image datasets for
classification and object detection from real world video streams. In this manner, the
effectiveness of the techniques and model presented in this project will be further verified and

methods validated.

49

References

Ahmed, N.A. (2023). What is A Confusion Matrix in Machine Learning? The Model
Evaluation Tool Explained. https://www.datacamp.com/tutorial/what-is-a-confusion-matrix-

in-machine-learning.

Akhtar, N. and Ragavendran, U. (2020). Interpretation of intelligence in CNN-pooling
processes: a methodological survey. Neural Computing and Applications, 32.
doi:https://doi.org/10.1007/s00521-019-04296-5.

Alzubaidi, L., Zhang, J., Humaidi, A.J., Al-Dujaili, A., Duan, Y., Al-Shamma, O.,
Santamaria, J., Fadhel, M.A., Al-Amidie, M. and Farhan, L. (2021). Review of deep learning:
concepts, CNN architectures, challenges, applications, future directions. Journal of Big Data,
8(1). doi:https://doi.org/10.1186/s40537-021-00444-8.

Bakhshi, A., Chalup, S. and Noman, N. (2020). Fast Evolution of CNN Architecture for
Image Classification. In: Deep Neural Evolution. Singapore: Springer Science+Business
Media. Springer, pp.209-229. doi:https://doi.org/10.1007/978-981-15-3685-4 8.

Chen, L., Li, S., Bai, Q., Yang, J., Jiang, S. and Miao, Y. (2021). Review of Image
Classification Algorithms Based on Convolutional Neural Networks. Remote Sensing, 13(22),
p.4712. doi:https://doi.org/10.3390/rs13224712.

Chowdhury, Y.S., Dasgupta, R. and Nanda, S. (2021). Analysis of Various Optimizer on
CNN model in the Application of Pneumonia Detection. In: 3rd International Conference on
Signal Processing and Communication (ICPSC). [online] Coimbatore, India: IEEE Explore,
pp.417-421. doi:https://doi.org/10.1109/ICSPC51351.2021.9451768.

Citovsky, G., DeSalvo, G., Gentile, C., Karydas, L., Rajagopalan, A., Rostamizadeh, A. and
Kumar, S. (2021). Batch Active Learning at Scale. In: 35th Conference on Neural
Information Processing Systems (NeurlPS 2021). [online] pp.11933-11944. Available at:
https://proceedings.neurips.cc/paper_files/paper/2021/hash/64254db8396e404d9223914a0bd
355d2-Abstract.html [Accessed 17 Apr. 2024].

Demir, F. (2022). Deep autoencoder-based automated brain tumor detection from MRI data.
Artificial Intelligence-Based Brain-Computer Interface, Academic Press, pp.317-351.
doi:https://doi.org/10.1016/b978-0-323-91197-9.00013-8.

50

Dhillon, A. and Verma, G.K. (2020). Convolutional neural network: a review of models,
methodologies and applications to object detection. Progress in Artificial Intelligence, 9(2).
doi:https://doi.org/10.1007/s13748-019-00203-0.

Dhruv, P. and Naskar, S. (2020). Image Classification Using Convolutional Neural Network
(CNN) and Recurrent Neural Network (RNN): A Review. In: Machine Learning and
Information Processing. Advances in Intelligent Systems and Computing. Springer, pp.367—
381. doi:https://doi.org/10.1007/978-981-15-1884-3 34.

Diwan, T., Anirudh, G. and Tembhurne, J.V. (2022). Object detection using YOLO:
challenges, architectural successors, datasets and applications. Multimedia Tools and
Applications, 82, pp.9243-9275. doi:https://doi.org/10.1007/s11042-022-13644-y.

Du, L., Zhang, R. and Wang, X. (2020). Overview of two-stage object detection algorithms.
Journal of Physics: Conference Series, 1544. doi:https://doi.org/10.1088/1742-
6596/1544/1/012033.

Ferrer, L. (2022). Analysis and comparison of classification metrics. arXiv preprint
arXiv:2209.05355.

Flores-Calero, M., Astudillo, C.A., Guevara, D., Maza, J., Lita, B.S., Defaz, B., Ante, J.S.,
Zabala-Blanco, D. and Armingol Moreno, J.M. (2024). Traffic Sign Detection and
Recognition Using YOLO Object Detection Algorithm: A Systematic Review. Mathematics,
12(2), p.297. doi:https://doi.org/10.3390/math12020297.

Gulakala, R., Markert, B. and Stoffel, M. (2023). Rapid diagnosis of Covid-19 infections by a
progressively growing GAN and CNN optimisation. Computer Methods and Programs in
Biomedicine, 229, p.107262. doi:https://doi.org/10.1016/j.cmpb.2022.107262.

Hafiz, M.T.K., Masood, T., Jaffar, A., Akram, S. and Sohail Masood Bhatti (2023).
Performance analysis of state-of-the-art CNN architectures for brain tumour detection.
International Journal of Imaging Systems and Technology, 34(1).
doi:https://doi.org/10.1002/ima.22949.

Hossain , M.R. and Timmer, D. (2021). Machine learning model optimization with hyper
parameter tuning approach. Global Journal of Computer Science and Technology, 21(D2),
pp.7-13.

51

Joseph, E.C., Bamisile, O., Ugochi, N., Zhen, Q., llakoze, N. and ljeoma, C. (2021).
Systematic Advancement of Yolo Object Detector For Real-Time Detection of Objects. In:
18th International Computer Conference on Wavelet Active Media Technology and
Information Processing (ICCWAMTIP). Chengdu, China: IEEE, pp.279-284.
doi:https://doi.org/10.1109/ICCWAMTIP53232.2021.9674163.

Kim, S., Lee, J., Kang, S., Lee, J. and Yoo, H.-J. (2020). A Power-Efficient CNN Accelerator
With Similar Feature Skipping for Face Recognition in Mobile Devices. IEEE Transactions
on Circuits and Systems I-regular Papers, 67(4), pp.1181-1193.
doi:https://doi.org/10.1109/tcsi.2020.2966243.

Kyngas, H. (2020). Qualitative Research and Content Analysis. In: The Application of
Content Analysis in Nursing Science Research. Springer, pp.3-11.

Li, T., Yan, Y. and Du, W. (2022). Sign Language Recognition Based on Computer Vision.
In: 2022 IEEE International Conference on Artificial Intelligence and Computer Applications
(ICAICA). China: IEEE Xplore, pp.927-931.
doi:https://doi.org/10.1109/ICAICA54878.2022.9844497.

Liang Tianjiao and Hong, B. (2020). A optimized YOLO method for object detection. In:
16th International Conference on Computational Intelligence and Security (CIS). Guangxi,
China: IEEE. doi:https://doi.org/10.1109/cis52066.2020.00015.

Mandeep (2024). What do you mean by ILSVRC dataset in Deep Learning and Why it is used
? [online] Medium. Available at: https://medium.com/@mandeep_61901/what-do-you-mean-
by-ilsvrc-dataset-in-deep-learning-and-why-it-is-used-
1be8b692994b#:~:text=The%20ImageNet%20Large%20Scale%20Visual [Accessed 17 Apr.
2024].

Marcu, D.C. and Grava, C. (2021). The impact of activation functions on training and
performance of a deep neural network. In: 2021 16th International Conference on
Engineering of Modern Electric Systems (EMES). Romania: IEEE.
doi:https://doi.org/10.1109/emes52337.2021.9484108.

Meel, V. (2021). What is the COCO Dataset? What you need to know in 2021. [online]

viso.ai. Available at: https://viso.ai/computer-vision/coco-dataset/ [Accessed 16 Apr. 2024].

52

Mishra, S.B. and Alok, S. (2022). Handbook of research methodology . Educreation
publishing.

Mishra, M. (2020). Convolutional Neural Networks, Explained. [online] Medium. Available
at: https://towardsdatascience.com/convolutional-neural-networks-explained-9cc5188c4939
[Accessed 28 Mar. 2024].

Mittal, S. (2020). A survey of FPGA-based accelerators for convolutional neural networks.
Neural Computing and Applications, 32(4), pp.1109-11309.
doi:https://doi.org/10.1007/s00521-018-3761-1.

Oh, S., Choi, J. and Kim, J. (2020). A Tutorial on Quantum Convolutional Neural Networks
(QCNN). In: IEEE Xplore. Jeju, South Korea: IEEE, pp.236—239.
doi:https://doi.org/10.1109/1CTC49870.2020.9289439.

Oyama, N., Koyama , S. and Kawasaki, T. (2023). What do deep neural networks find in
disordered structures of glasses? Frontiers in Physics , 10.
doi:https://doi.org/10.3389/fphy.2022.1007861.

Peng, X., Zhang, X., Li, Y. and Liu, B. (2020). Research on image feature extraction and
retrieval algorithms based on convolutional neural network. Journal of Visual
Communication and Image Representation, 69, p.102705.
doi:https://doi.org/10.1016/j.jvcir.2019.102705.

Podder, S., Bhattacharjee, S. and Roy, A. (2021). An efficient method of detection of
COVID-19 using Mask R-CNN on chest X-Ray images. AIMS Biophysics, 8(3), pp.281-290.
doi:https://doi.org/10.3934/biophy.2021022.

Qin, J., Pan, W., Xiang, X., Tan, Y. and Hou, G. (2020). A biological image classification
method based on improved CNN. Ecological Informatics, 58.
doi:https://doi.org/10.1016/j.ecoinf.2020.101093.

Sharma, S., Mehra, R. and Kumar, S. (2020). Optimised CNN in conjunction with efficient
pooling strategy for the multi-classification of breast cancer. IET Image Processing, 15(4).
doi:https://doi.org/10.1049/ipr2.12074.

53

Shyam, R. (2021). Convolutional Neural Network and its Architectures . Journal of
Computer Technology & Applications , 12(2). doi:https://doi.org/10.37591/JoCTA.

Simic, M. (2024). Intersection Over Union for Object Detection. [online] Baeldung.
Available at: https://www.baeldung.com/cs/object-detection-intersection-vs-union [Accessed
28 Mar. 2024].

Singh, S., Yadav, A., Jain, J., Shi, H., Johnson, J. and Desai, K. (2024). Benchmarking Object
Detectors with COCO: A New Path Forward. arXiv (Cornell University).
doi:https://doi.org/10.48550/arxiv.2403.188109.

Srivastava, H. and Sarawadekar, K. (2020). A Depthwise Separable Convolution Architecture
for CNN Accelerator. In: IEEE Applied Signal Processing Conference (ASPCON). Kolkata,
India: IEEE. doi:https://doi.org/10.1109/aspcon49795.2020.9276672.

Stankovic, L. and Mandic, D. (2023). Convolutional Neural Networks Demystified: A
Matched Filtering Perspective-Based Tutorial. IEEE Transactions on Systems, Man, and
Cybernetics: Systems, 53(6), pp.1-15. doi:https://doi.org/10.1109/tsmc.2022.3228597.

Sultana, F., Sufian, A. and Dutta, P. (2020). A Review of Object Detection Models Based on
Convolutional Neural Network. In: Advances in Intelligent Systems and Computing.
Singapore: Springer, pp.1-16. doi:https://doi.org/10.1007/978-981-15-4288-6_1.

Sun, Y., Xue, B., Zhang, M., Yen, G.G. and Lv, J. (2020). Automatically Designing CNN
Architectures Using the Genetic Algorithm for Image Classification. IEEE Transactions on
Cybernetics, 50(9), pp.3840-3854. doi:https://doi.org/10.1109/TCYB.2020.2983860.

Taye, M.M. (2023). Theoretical Understanding of Convolutional Neural Network: Concepts,
Architectures, Applications, Future Directions. Computation, 11(3), p.52.
doi:https://doi.org/10.3390/computation11030052.

Valarmathi, G., Suganthi, S.U., Subashini, V., Janaki, R., Sivasankari, R. and Dhanasekar, S.
(2021). CNN algorithm for plant classification in deep learning. Materials Today:
Proceedings, 46(9), pp.3684-3689. doi:https://doi.org/10.1016/j.matpr.2021.01.847.

54

Vujovic, Z.D. (2021). Classification Model Evaluation Metrics. International Journal of
Advanced Computer Science and Applications, 12(6).
doi:https://doi.org/10.14569/ijacsa.2021.0120670.

Wang, P., Fan, E. and Wang, P. (2020). Comparative Analysis of Image Classification
Algorithms Based on Traditional Machine Learning and Deep Learning. Pattern Recognition
Letters, 141, pp.61-67. doi:https://doi.org/10.1016/j.patrec.2020.07.042.

Weinan, E., Ma, C., Wojtowytsch, S. and Wu, L. (2020). Towards a Mathematical
Understanding of Neural Network-Based Machine Learning: what we know and what we
don’t. arXiv:2009.10713v3. Cornell University.
doi:https://doi.org/10.48550/arxiv.2009.10713.

Zafar, A., Aamir, M., Mohd Nawi, N., Arshad, A., Riaz, S., Alruban, A., Dutta, A.K. and
Almotairi, S. (2022). A Comparison of Pooling Methods for Convolutional Neural Networks.
Applied Sciences, 12(17), p.8643. doi:https://doi.org/10.3390/app12178643.

Zebari, R., Abdulazeez, A., Zeebaree, D., Zebari, D. and Saeed, J. (2020). A Comprehensive
Review of Dimensionality Reduction Techniques for Feature Selection and Feature
Extraction. Journal of Applied Science and Technology Trends, 1(2), pp.56-70.
doi:https://doi.org/10.38094/jastt1224.

Zhang, S., Cao, J., Zhang, Q., Zhang, Q., Zhang, Y. and Wang, Y. (2020a). An FPGA-Based
Reconfigurable CNN Accelerator for YOLO. In: IEEE 3rd International Conference on
Electronics Technology (ICET). Chengdu, China: IEEE.
doi:https://doi.org/10.1109/icet49382.2020.9119500.

Zhang, Y., Chu, J., Leng, L. and Miao, J. (2020b). Mask-Refined R-CNN: A Network for
Refining Object Details in Instance Segmentation. Sensors, 20(4), p.1010.
doi:https://doi.org/10.3390/s20041010.

Zhou, Y.-C., Hu, Z.-Z., Yan, K.-X. and Lin, J.-R. (2021). Deep Learning-Based Instance
Segmentation for Indoor Fire Load Recognition. IEEE Access, 9, pp.148771-148782.
doi:https://doi.org/10.1109/access.2021.3124831.

55

56

	1 Chapter 1: Introduction
	1.1 Brief overview of CNN algorithm in object detection and recognition of new objects
	1.2 Statement of research problem
	1.3 Research Objectives
	1.4 Significance of research
	1.5 Structure of the dissertation

	2 Chapter 2: Background and Literature Review
	2.1 Brief on ML
	2.2 Basics of CNN
	2.2.1 Pooling
	2.2.2 Padding
	2.2.3 Dimensionality reduction

	2.3 CNN functions
	2.3.1 Sigmoid or Logistic Activation Function
	2.3.2 Tanh (Hyperbolic tangent activation function)
	2.3.3 ReLU (Rectified Linear Unit) function

	2.4 Evaluation Metrics
	2.5 Datasets
	2.5.1 COCO dataset
	2.5.2 COCO128
	2.5.3 Large scale visual recognition challenge (LSVRC)

	2.6 CNN Models and Frameworks
	2.6.1 AlexNet
	2.6.2 ResNet
	2.6.3 GoogleNet
	2.6.4 MobileNet
	2.6.5 YOLO
	2.6.6 Frameworks

	2.7 CNN for Image Classification Problems
	2.8 Related work on CNN models and applications
	2.9 Summary and Gaps in Literature

	3 Chapter 3: Methodology and Implementation
	3.1 Setting up Nvidia Jetson Nano
	3.2 Image classification
	3.3 Object Detection
	3.4 Optimizations
	3.4.1 Resnet-18
	3.4.2 YOLO v5
	3.4.3 YOLO v7

	3.5 Research Design
	3.5.1 Data Analysis
	3.5.2 Epochs
	3.5.3 Batch Size
	3.5.4 Learning Rate
	3.5.5 CNN Models
	3.5.6 Hardware and Specifications

	Chapter 4: Results and Discussions
	Chapter 5: Conclusion
	References

